E-Book, Englisch, Band 32, 600 Seiten
Reihe: Topics in Geobiology
Allison / Bottjer Taphonomy
2. Auflage 2011
ISBN: 978-90-481-8643-3
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark
Process and Bias Through Time
E-Book, Englisch, Band 32, 600 Seiten
Reihe: Topics in Geobiology
ISBN: 978-90-481-8643-3
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark
Taphonomic bias is a pervasive feature of the fossil record. A pressing concern, however, is the extent to which taphonomic processes have varied through the ages. It is one thing to work with a biased data set and quite another to work with a bias that has changed with time. This book includes work from both new and established researchers who are using laboratory, field and data-base techniques to characterise and quantify the temporal and spatial variation in taphonomic bias. It may not provide all the answers but it will at least shed light on the right questions.
Peter Allison graduated from the University of Hull with a Geology B.Sc. in 1983. After a short spell as a journalist writing market surveys for Industrial Minerals Magazine he went back to university to do a Ph.D. at the University of Bristol, graduating in 1987. Following post-doctoral positions at the University of Washington's Friday Harbor Laboratories and the Department of Geology at Kochi University, Japan, he took a faculty position at the Postgraduate Research Institute for Sedimentology at the University of Reading. From there he joined the Earth Science and Engineering Department at Imperial College in 1997.David J. Bottjer was born in New York City and attended Haverford College outside of Philadelphia (where he majored in Geology at neighboring Bryn Mawr College), and received an M.A. from the State University of New York at Binghamton and his Ph.D. from Indiana University (1978). After leaving Indiana he spent a post-doctoral year with the United States Geological Survey at the Smithsonian Institution in Washington, D.C. He began as Assistant Professor at the University of Southern California in 1979, where he is currently Professor of Earth and Biological Sciences and Chair of the Department of Earth Sciences. He has engaged in extensive professional service through his career, including a past editorship of Palaios, a present editorship of Palaeogeography, Palaeoclimatology, Palaeoecology, and election to the presidency of the Paleontological Society for 2004-2006
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;8
3;Contributors;10
4;Chapter 1: Taphonomy: Bias and Process Through Time;14
4.1;1 Introduction;15
4.1.1;1.1 Taphonomy: A Brief History;16
4.2;2 Is Taphonomic Bias Uniform?;17
4.2.1;2.1 Biomolecular Innovation;18
4.2.2;2.2 Secular Trends in Ocean Chemistry and Skeletal Mineralogy;19
4.2.3;2.3 Biological Evolution;20
4.2.4;2.4 Temporal Trends in Conserving Environments;22
4.3;3 Taphonomy: A Prospectus?;24
4.4;References;25
5;Chapter 2: Taphonomic Overprints on Phanerozoic Trends in Biodiversity: Lithification and Other Secular Megabiases;31
5.1;1 Introduction;32
5.2;2 Lithification and Diagenesis in the Fossil Record;35
5.2.1;2.1 Time-Series Analysis of Lithification and Alpha Diversity: A Global Perspective;36
5.2.2;2.2 Time-Series Analysis of Lithification and Alpha Diversity: A Regional Perspective;44
5.2.2.1;2.2.1 Cenozoic of New Zealand;44
5.2.2.2;2.2.2 Paleogene of the Gulf Coastal Plain;47
5.2.3;2.3 Within-Interval Analysis of Lithification and Alpha Diversity: A Local Perspective;49
5.2.4;2.4 Influence of Lithification and Diagenesis on Preservational Quality: Implications for Taxonomy;51
5.2.4.1;2.4.1 Direct Observation of Fossil Specimens;53
5.2.4.2;2.4.2 Other Studies;61
5.3;3 Exploring Other Taphonomic Trends in the Quality of the Phanerozoic Fossil Record;62
5.3.1;3.1 Preservation as Casts and Molds;62
5.3.2;3.2 Lagerstätten and the Preservation of Soft-Bodied Fossils;64
5.3.3;3.3 Concentrations of Fossils;66
5.3.4;3.4 Silicification;67
5.3.5;3.5 Phosphatization;71
5.4;4 Discussion;72
5.4.1;4.1 Evaluation of the Paleobiology Database in Capturing Taphonomic Trends;72
5.4.2;4.2 Research Opportunities and the Mitigation of Taphonomic Biases;76
5.4.2.1;4.2.1 Taphonomic Biases and the Biodiversity Record;76
5.4.2.2;4.2.2 Implications for Taxonomic and Morphologic Analyses;77
5.5;5 Conclusions;80
5.6;6 Appendix;82
5.7;References;82
6;Chapter 3: Taphonomic Bias in Shelly Faunas Through Time: Early Aragonitic Dissolution and Its Implications for the Fossil Record;90
6.1;1 Introduction;91
6.2;2 Environments of Dissolution;92
6.2.1;2.1 Seafloor Diagenesis;92
6.2.2;2.2 Taphonomically Active Zone (TAZ);93
6.2.3;2.3 Shallow Sub-TAZ Burial Diagenesis;95
6.3;3 Taphonomic Windows;95
6.3.1;3.1 ‘Skeletal Lagerstätten’;95
6.3.2;3.2 Other Deposits Capturing Biodiversity;100
6.3.2.1;3.2.1 Storm and Shell Beds;100
6.3.2.2;3.2.2 Shell Plasters;104
6.3.2.3;3.2.3 Hardgrounds;104
6.3.2.4;3.2.4 Shoal Deposits;105
6.4;4 Discussion;106
6.4.1;4.1 Taphonomic Gradients and Molluscan Preservation: A Model;106
6.4.2;4.2 Molluscan Preservation During ‘Calcite’ and ‘Aragonite Seas’;108
6.5;5 Conclusions;108
6.6;References;109
7;Chapter 4: Comparative Taphonomy and Sedimentology of Small-Scale Mixed Carbonate/Siliciclastic Cycles: Synopsis of Phanerozoic Examples;117
7.1;1 Introduction;118
7.2;2 Small-Scale Sedimentary Cycles;121
7.2.1;2.1 Defining Cycles;121
7.2.2;2.2 Identifying Analogous Phases of Cycles;122
7.3;3 Examples of Small-Scale Cycles in the Phanerozoic;125
7.3.1;3.1 Middle Cambrian: Great Basin USA;125
7.3.1.1;3.1.1 Proximal Cycles;128
7.3.1.2;3.1.2 Distal Cycles;130
7.3.2;3.2 Late Ordovician; Eastern North America131
7.3.2.1;3.2.1 Proximal Cycles;131
7.3.2.2;3.2.2 Distal Cycles;135
7.3.3;3.3 Early Devonian; Mdaouer-el-Kbir and Khebchia Formations, SW Morocco139
7.3.3.1;3.3.1 Proximal Cycles;139
7.3.3.2;3.3.2 Distal Cycles;140
7.3.4;3.4 Middle Devonian; Hamilton Group of New York144
7.3.4.1;3.4.1 Proximal Cycles;145
7.3.4.2;3.4.2 Distal Cycles;147
7.3.5;3.5 Lower Jurassic: Lias UK;147
7.3.5.1;3.5.1 Proximal Cycles;147
7.3.5.2;3.5.2 Distal Cycles;151
7.3.6;3.6 Upper Jurassic to Lower Cretaceous; India155
7.3.7;3.7 Upper Cretaceous: Greenhorn Formation, Western Interior, USA;156
7.3.7.1;3.7.1 Proximal Cycles;157
7.3.7.2;3.7.2 Distal Cycles;159
7.3.8;3.8 Cenozoic: Ashiya Group, Japan, and Punta Judas Formation, Costa Rica;160
7.3.8.1;3.8.1 Proximal Cycles;160
7.3.8.2;3.8.2 Distal Cycles;162
7.4;4 Discussion: Synopsis of Examples;162
7.4.1;4.1 Basal Condensed Shell Bed Taphofacies;163
7.4.1.1;4.1.1 Base of Cycle Shell Debris Beds;163
7.4.1.2;4.1.2 Gray Marl Beds with Thin Condensed Hashes;169
7.4.1.3;4.1.3 Biostromes-Bioherms;169
7.4.2;4.2 Dark Mudrocks;170
7.4.2.1;4.2.1 Dark Laminated Shales;170
7.4.2.2;4.2.2 Gray Mudstones and Siltstones;174
7.4.3;4.3 Proximal Siltstones and Sandstones;178
7.4.4;4.4 Diagenetic Carbonates;181
7.5;5 Inferred Environmental Changes Through Small-Scale Cycles: Implications for Cycle Genesis;184
7.5.1;5.1 Environmental Energy;184
7.5.2;5.2 Oxygenation and Geochemistry;185
7.5.3;5.3 Sedimentation Rates and Time-Averaging;186
7.5.4;5.4 Episodicity and Dynamics of Sedimentation;186
7.5.5;5.5 Overview;189
7.6;6 Long-Term Trends in Cyclic Taphofacies;190
7.7;7 Summary: Toward General Cyclic Taphofacies Models;192
7.8;References;196
8;Chapter 5: Taphonomy of Animal Organic Skeletons Through Time;209
8.1;1 Introduction;210
8.2;2 Organic Skeletons;215
8.3;3 Chemosystematics;217
8.4;4 Diagenesis;217
8.4.1;4.1 Molecules Are Not Introduced from Sediment;217
8.4.2;4.2 Components Contributing to the Composition of the Fossil;218
8.4.3;4.3 Implications for Kerogen Formation;220
8.4.4;4.4 The Rate of Diagenetic Change;223
8.5;5 Future Directions in Molecular Taphonomy;224
8.6;6 Appendix: Main Analytical Methods Applied to Organic Remains;225
8.6.1;6.1 The Soluble Fraction;225
8.6.2;6.2 The Insoluble Fraction;225
8.6.3;6.3 Thermal Maturation Experiments;227
8.6.4;6.4 Investigating Morphology;228
8.7;References;228
9;Chapter 6: Molecular Taphonomy of Plant Organic Skeletons;232
9.1;1 Introduction;233
9.1.1;1.1 Aims of This Chapter;233
9.1.2;1.2 Caveats and Barriers to Understanding Resistant Bio- and Geomacromolecules;234
9.2;2 Leaves and Cuticles;235
9.2.1;2.1 Leaf and Cuticle Preservation;235
9.2.2;2.2 Polymerization and Future Research Directions;241
9.3;3 Xylem (Including Wood), Fruit Walls and Seed Coats;243
9.4;4 Flowers;246
9.5;5 Spores and Pollen;246
9.6;6 Phytoplankton and Algal Cysts;247
9.6.1;6.1 Chlorophyta and Prasinophyta;247
9.6.2;6.2 Dinoflagellates;248
9.6.3;6.3 Acritarchs;249
9.7;7 Conclusions and Implications;250
9.7.1;7.1 Plant Evolutionary Constraints and Temporal Bias;250
9.7.2;7.2 Implications for Applied Paleobotany;250
9.7.2.1;7.2.1 Floras and Vegetation Reconstruction, Dating First Occurrences Etc.;250
9.7.2.2;7.2.2 Geochemical Applications;250
9.7.2.3;7.2.3 Ultrastructure, Taxonomic Characteristics and Chemotaxonomy;251
9.8;References;252
10;Chapter 7: The Relationship Between Continental Landscape Evolution and the Plant-Fossil Record: Long Term Hydrologic Controls on Preservation;257
10.1;1 Introduction;258
10.2;2 Factors Influencing Plant-Part Preservation;260
10.2.1;2.1 Plant-Part Decay Rates;260
10.2.2;2.2 Relationship Between Rates of Decay and Sedimentation;262
10.2.2.1;2.2.1 Subaqueous Environments;262
10.2.2.2;2.2.2 Subaerial Environments;264
10.3;3 Models of Stratigraphic Frameworks and Landscape Evolution;265
10.3.1;3.1 Continental Sequence Stratigraphy;266
10.3.2;3.2 Graded Profiles, Paleosols, and Landscape Evolution;267
10.4;4 A Model for Plant-Part Preservation in Continental Landscapes;269
10.5;5 Case Studies;272
10.5.1;5.1 Plant Assemblages in Aggradational/Degradational Landscapes;273
10.5.1.1;5.1.1 Paleogene Weißelster Basin, Central Europe;273
10.5.1.2;5.1.2 Upper Triassic Chinle Formation, Southwestern United States;276
10.5.1.3;5.1.3 Lower Triassic Katberg Formation, South Africa;278
10.5.2;5.2 Plant Assemblages in Aggradational Landscapes;280
10.5.2.1;5.2.1 Eocene Willwood Formation, Western United States;280
10.5.2.2;5.2.2 Upper Jurassic Morrison Formation, Western United States;283
10.6;6 Conclusions;285
10.7;References;287
11;Chapter 8: Hierarchical Control of Terrestrial Vertebrate Taphonomy Over Space and Time: Discussion of Mechanisms and Implications for Vertebrate Paleobiology;294
11.1;1 Introduction;295
11.1.1;1.1 Top-Down Versus Bottom-Up Controls on Terrestrial Taphonomy;295
11.1.2;1.2 Hierarchical Integration of Terrestrial Vertebrate Taphonomy;298
11.2;2 The Structure of Vertebrate Bone;299
11.3;3 The Terrestrial Taphonomic Hierarchy;300
11.3.1;3.1 Microscale Processes;302
11.3.1.1;3.1.1 Surface Processes;302
11.3.1.2;3.1.2 Subsurface Processes;305
11.3.2;3.2 Mesoscale Processes;308
11.3.2.1;3.2.1 Surface Processes;308
11.3.2.2;3.2.2 Subsurface Processes;310
11.3.3;3.3 Macroscale Processes;312
11.3.3.1;3.3.1 Surface Processes;312
11.3.3.2;3.3.2 Subsurface Processes;313
11.4;4 Large-Scale Spatio-Temporal Controls Over Taphonomic Processes;315
11.4.1;4.1 Geophysical Dynamics;315
11.4.2;4.2 Atmospheric Carbon Dioxide;317
11.4.3;4.3 Orbital Cycles in Solar Energy;317
11.5;5 Implications for the Terrestrial Vertebrate Fossil Record;318
11.5.1;5.1 The Existence of Terrestrial Megabiases;318
11.5.2;5.2 Examples of Changing Taphonomic Regimes Over Time;321
11.5.2.1;5.2.1 Paleozoic;321
11.5.2.2;5.2.2 Mesozoic;323
11.6;6 Implications for Vertebrate Paleobiology;326
11.6.1;6.1 Changing Patterns of Species Diversity;326
11.6.2;6.2 Model of Diversity Gradients and Climate Change;327
11.7;7 Summary and Conclusions;330
11.8;References;331
12;Chapter 9: Microtaphofacies: Exploring the Potential for Taphonomic Analysis in Carbonates;344
12.1;1 Introduction;345
12.2;2 Taphonomy in Carbonate Environments;346
12.2.1;2.1 Taphonomy as an Inherent Part of Microfacies Analysis;346
12.2.2;2.2 Concepts and Definitions of Taphonomy in Thin Section Analysis;348
12.3;3 Taphonomy of Paleogene Components in Thin Section;349
12.4;4 Taphonomic Attributes of Major Facies Types;357
12.4.1;4.1 Lateral and Temporal Facies Distribution;357
12.4.2;4.2 Facies Description and Distribution;358
12.4.2.1;4.2.1 Maerl Facies;358
12.4.2.2;4.2.2 Rhodolith Facies;359
12.4.2.3;4.2.3 Crustose Coralline Algal Facies;360
12.4.2.4;4.2.4 Coralline Algal Debris Facies;361
12.4.2.5;4.2.5 Peyssonneliacean Facies;362
12.4.2.6;4.2.6 Larger Nummulites Facies;362
12.4.2.7;4.2.7 Small Nummulites Facies;364
12.4.2.8;4.2.8 Orthophragminid Facies;365
12.4.2.9;4.2.9 Orbitolites Facies;366
12.4.2.10;4.2.10 Smaller Miliolid Facies;366
12.4.2.11;4.2.11 Alveolinid Facies;366
12.4.2.12;4.2.12 Acervulinid Facies;366
12.4.2.13;4.2.13 Coral Facies;367
12.4.2.14;4.2.14 Bryozoan Facies;367
12.4.3;4.3 Taphonomic Processes in Paleogene Carbonates of the Study Area;367
12.5;5 Discussion of the Distribution of Taphonomic Features Among and Between Time Units;369
12.6;6 Conclusions;370
12.7;References;371
13;Chapter 10: Taphonomy of Reefs Through Time;381
13.1;1 Introduction;382
13.2;2 Spatial and Temporal Variation in Modern Coral Reef Communities;383
13.3;3 Taphonomy of the Modern Coral Reef Environment;386
13.3.1;3.1 Loss due to Non-Preservation;387
13.3.2;3.2 Mode of Life, Skeletal Robustness and Rates of Skeletal Production;387
13.3.3;3.3 Bioerosion, Abrasion, Transport, and Burial;388
13.3.4;3.4 Early Diagenesis: Dissolution and Cementation;392
13.3.5;3.5 Changing Rates of Accumulation;393
13.3.6;3.6 Detection of Critical Events;394
13.4;4 Taphonomic Bias in Ancient Reefs: Insight from the Pleistocene Record;395
13.5;5 Changes in Reef Taphonomy Through the Phanerozoic;396
13.5.1;5.1 Rise of Biological Disturbance;396
13.5.2;5.2 Response to Increase in Disturbance;397
13.5.2.1;5.2.1 Secure Attachment to a Hard Substrate;399
13.5.2.2;5.2.2 Resistance to Partial Mortality;399
13.5.2.3;5.2.3 Regeneration After Breakage;401
13.5.2.4;5.2.4 Patterns of Sediment Removal and Storage;403
13.5.3;5.3 Response to Changing Seawater Chemistry: Secular Changes in Mineralogy;403
13.5.3.1;5.3.1 Changing Styles of Early Diagenesis;404
13.6;6 Current Global Change and Taphonomy;405
13.6.1;6.1 Loss of Herbivores and Higher Predators;405
13.6.2;6.2 Changing Storm Patterns;405
13.6.3;6.3 Rise in Sea Level;406
13.6.4;6.4 Rises in CO2 and Global Temperature;406
13.6.5;6.5 Changes in Sea-Water Chemistry;407
13.7;7 Summary;408
13.8;References;410
14;Chapter 11: Silicification Through Time;416
14.1;1 Introduction;417
14.2;2 Processes and Controls;418
14.2.1;2.1 Experiments;422
14.2.2;2.2 Skeletal Factors;422
14.2.2.1;2.2.1 Original Mineralogy;422
14.2.2.2;2.2.2 Distribution of Organic Material;423
14.2.2.3;2.2.3 Shell Ultrastructure;424
14.2.3;2.3 Diagenesis: Coupled Dissolution/Precipitation;424
14.2.4;2.4 Influence of Depositional Environment;426
14.2.4.1;2.4.1 Sequence Stratigraphic Framework;426
14.2.4.2;2.4.2 Silica Source;426
14.2.4.3;2.4.3 Other Factors;427
14.2.5;2.5 Models of Silicification;428
14.3;3 Silicified Faunas Through Time;428
14.3.1;3.1 Temporal Patterns;429
14.3.2;3.2 Global Ocean Chemistry;430
14.3.3;3.3 Spatial Patterns;431
14.4;4 Taphonomic Bias of Selective Silicification;431
14.4.1;4.1 Diversity Through Time;432
14.4.2;4.2 Paleoecology;432
14.5;5 Conclusion;434
14.6;References;435
15;Chapter 12: Phosphatization Through the Phanerozoic;440
15.1;1 Introduction;441
15.2;2 Phosphatization Processes and Biases;441
15.2.1;2.1 Phosphatization Processes;441
15.2.2;2.2 Phosphatization Biases;443
15.3;3 Temporal Distribution with Examples;444
15.3.1;3.1 Paleozoic Phosphatization;444
15.3.1.1;3.1.1 Cambrian Phosphatization;444
15.3.1.2;3.1.2 Ordovician Phosphatization;448
15.3.1.3;3.1.3 Silurian Phosphatization;449
15.3.1.4;3.1.4 Devonian Phosphatization;449
15.3.1.5;3.1.5 Carboniferous Phosphatization;449
15.3.1.6;3.1.6 Permian Phosphatization;450
15.3.2;3.2 Mesozoic Phosphatization;450
15.3.2.1;3.2.1 Triassic Phosphatization;450
15.3.2.2;3.2.2 Jurassic Phosphatization;451
15.3.2.3;3.2.3 Cretaceous Phosphatization;452
15.3.3;3.3 Cenozoic and Recent Phosphatization;453
15.3.3.1;3.3.1 Paleogene Phosphatization;453
15.3.3.2;3.3.2 Neogene Phosphatization;454
15.3.3.3;3.3.3 Pleistocene and Recent Phosphatization;454
15.4;4 Temporal Distribution Hypotheses;455
15.5;5 Biases Through Time;456
15.6;6 Summary;457
15.7;References;458
16;Chapter 13: Three-Dimensional Morphological (CLSM) and Chemical (Raman) Imagery of Cellularly Mineralized Fossils;462
16.1;1 Introduction;463
16.1.1;1.1 Cellularly Mineralized Fossils;465
16.2;2 Techniques;466
16.2.1;2.1 Confocal Laser Scanning Microscopy (CLSM);466
16.2.2;2.2 Raman Spectroscopy;467
16.3;3 Applications;469
16.4;4 Mineralized Soft Tissues of Metazoans;469
16.4.1;4.1 Apatite-Mineralized Ctenophore Embryo;469
16.5;5 Permineralized Plants;471
16.5.1;5.1 Quartz-Permineralized Plant Axes;472
16.5.2;5.2 Calcite-Permineralized Plant Axes;473
16.6;6 Permineralized Organic-Walled Microorganisms;474
16.6.1;6.1 Quartz-Permineralized Acritarchs;475
16.6.2;6.2 Quartz-Permineralized Filamentous Microbes;477
16.6.2.1;6.2.1 Precambrian Cyanobacteria;477
16.6.2.2;6.2.2 Raman Index of Preservation (RIP);482
16.6.2.3;6.2.3 Archean Bacteria;483
16.7;7 Summary;487
16.8;References;488
17;Chapter 14: Taphonomy in Temporally Unique Settings: An Environmental Traverse in Search of the Earliest Life on Earth;492
17.1;1 Introduction: A Preservational Dark Age?;493
17.2;2 Early Eden or Distant Planet?;494
17.3;3 New Taphonomic Windows for Old;495
17.4;4 Cellular Lagerstätten;496
17.5;5 The Challenge of Pseudofossils;498
17.6;6 An Early Earth Taphonomic Traverse;499
17.6.1;6.1 Pillow Basalts;500
17.6.2;6.2 Black Smokers;503
17.6.3;6.3 White Smokers;505
17.6.4;6.4 Seafloor Banded Cherts;505
17.6.5;6.5 Stromatolites;510
17.6.6;6.6 Siliclastics;514
17.7;7 Summary;516
17.8;References;517
18;Chapter 15: Evolutionary Trends in Remarkable Fossil Preservation Across the Ediacaran–Cambrian Transition and the Impact of Metazoan Mixing;524
18.1;1 Introduction;525
18.2;2 Siliceous (Gunflint-type) Preservation;528
18.3;3 Phosphatic (Doushantuo-type) Preservation;536
18.4;4 Siliciclastic (Ediacara-type) Preservation;545
18.5;5 Carbonaceous Film (Miaohe-type) Preservation;552
18.6;6 Carbonate (Tufa-like) Preservation;555
18.7;7 Conclusion;559
18.8;References;560
19;Chapter 16: Mass Extinctions and Changing Taphonomic Processes;573
19.1;1 Introduction;574
19.2;2 Previous Understanding of Biases in the Middle Permian to Early Triassic Fossil Record;576
19.2.1;2.1 End-Guadalupian Extinction and Lopingian Aftermath;576
19.2.2;2.2 End-Permian Mass Extinction and Early Triassic Aftermath;577
19.3;3 Methods;578
19.4;4 Results;579
19.4.1;4.1 Guadalupian–Lopingian Lazarus Effect;579
19.4.2;4.2 Patterns in Permian Silicification;581
19.4.3;4.3 Early Triassic Lazarus Effect;584
19.4.3.1;4.3.1 Controls on Early Triassic Lazarus Taxa;584
19.4.4;4.4 Patterns in Early Triassic Silicification;587
19.5;5 Conclusions;589
19.6;References;590
20;Index;595




