Buch, Englisch, Band 225, 164 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 442 g
Reihe: Progress in Mathematics
Buch, Englisch, Band 225, 164 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 442 g
Reihe: Progress in Mathematics
ISBN: 978-3-7643-2420-9
Verlag: Springer
This book puts the modern theory of complex linear convexity on a solid footing, and gives a thorough and up-to-date survey of its current status. Applications include the Fantappié transformation of analytic functionals, integral representation formulas, polynomial interpolation, and solutions to linear partial differential equations.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1 Convexity in Real Projective Space.- 1.1 Convexity in real affine space.- 1.2 Real projective space.- 1.3 Convexity in real projective space.- 2 Complex Convexity.- 2.1 Linearly convex sets.- 2.2 ?-convexity: Definition and examples.- 2.3 ?-convexity: Duality and invariance.- 2.4 Open ?-convex sets.- 2.5 Boundary properties of ?-convex sets.- 2.6 Spirally connected sets.- 3 Analytic Functionals and the Fantappiè Transformation.- 3.1 The basic pairing in affine space.- 3.2 The basic pairing in projective space.- 3.3 Analytic functionals in affine space.- 3.4 Analytic functionals in projective space.- 3.5 The Fantappiè transformation.- 3.6 Decomposition into partial fractions.- 3.7 Complex Kergin interpolation.- 4 Analytic Solutions to Partial Differential Equations.- 4.1 Solvability in ?-convex sets.- 4.2 Solvability and P-convexity for carriers.- References.




