Appice / Ciampi / Fumarola | Data Mining Techniques in Sensor Networks | E-Book | www.sack.de
E-Book

E-Book, Englisch, 105 Seiten, eBook

Reihe: SpringerBriefs in Computer Science

Appice / Ciampi / Fumarola Data Mining Techniques in Sensor Networks

Summarization, Interpolation and Surveillance
2014
ISBN: 978-1-4471-5454-9
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Summarization, Interpolation and Surveillance

E-Book, Englisch, 105 Seiten, eBook

Reihe: SpringerBriefs in Computer Science

ISBN: 978-1-4471-5454-9
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Emerging real life applications, such as environmental compliance, ecological studies and meteorology, are characterized by real-time data acquisition through a number of (wireless) remote sensors. Operatively, remote sensors are installed across a spatially distributed network; they gather information along a number of attribute dimensions and periodically feed a central server with the measured data. The server is required to monitor these data, issue possible alarms or compute fast aggregates. As data analysis requests, which are submitted to a server, may concern both present and past data, the server is forced to store the entire stream. But, in the case of massive streams (large networks and/or frequent transmissions), the limited storage capacity of a server may impose to reduce the amount of data stored on the disk.  One solution to address the storage limits is to compute summaries of the data as they arrive and use these summaries to interpolate the real data which are discarded instead.  On any future demands of further analysis of the discarded data, the server pieces together the data from the summaries stored in database and processes them according to the requests.

This work introduces the multiple possibilities and facets of a recently defined spatio-temporal pattern, called trend cluster, and its applications to summarize, interpolate and identify anomalies in a sensor network.   As an example application, the authors illustrate the application of trend cluster discovery to monitor the efficiency of photovoltaic power plants. The work closes with remarks on new possibilities for surveillance gained by recent developments of sensing technology, and with an outline of future challenges.

Appice / Ciampi / Fumarola Data Mining Techniques in Sensor Networks jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Introduction

Sensor Networks and Data Streams: Basics

Geodata Stream Summarization

Missing Sensor Data Interpolation

Sensor Data Surveillance

Sensor Data Analysis Applications



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.