Arregui | Sensors Based on Nanostructured Materials | E-Book | www.sack.de
E-Book

E-Book, Englisch, 380 Seiten

Arregui Sensors Based on Nanostructured Materials


1. Auflage 2010
ISBN: 978-0-387-77753-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 380 Seiten

ISBN: 978-0-387-77753-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book presents the many different techniques and methods of fabricating materials on the nanometer scale, and, specifically, the utilization of these resources with regard to sensors. The techniques described are studied from an application-oriented perspective, providing the reader with a perspective of the types of nanostructured sensors available that is broader than other books which concentrate on theoretical situations related to specific fabrication techniques.

Arregui Sensors Based on Nanostructured Materials jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Acknowledgments;5
2;Contents;7
3;Contributors;9
4;Introduction;11
4.1;1.1 Some Data About Nanotechnology;11
4.2;1.2 About This Book;15
4.3;Bibliography;17
5;Carbon Nanotube and Fullerene Sensors;20
5.1;2.1 Introduction;20
5.2;2.2 Carbon Nanotube Synthesis Techniques;21
5.2.1;2.2.1 Carbon Arc-Discharge Technique;21
5.2.2;2.2.2 Laser-Ablation Technique;22
5.2.3;2.2.3 Chemical Vapor Deposition Technique;23
5.2.4;2.2.4 Purification;23
5.3;2.3 Carbon Nanotube and Fullerene Sensors;24
5.3.1;2.3.1 Force Sensors - Pressure and Strain;24
5.3.2;2.3.2 Flow Sensors;27
5.3.3;2.3.3 Temperature Sensors;27
5.3.4;2.3.4 Chemical Sensors;28
5.3.5;2.3.5 Biosensors;31
5.3.6;2.3.6 Radiation Sensors;33
5.4;2.4 Conclusions;33
5.5;References;34
6;Non-carbon Nanotubes: Hydrogen Sensors Based on TiO2;38
6.1;3.1 Introduction;38
6.2;3.2 Fabrication of TiO2 Nanotube Arrays;39
6.3;3.3 Sensor Development and Operating Characteristics;42
6.3.1;3.3.1 Sensor Design;42
6.3.2;3.3.2 Operating Features;43
6.3.3;3.3.3 Tunability;43
6.3.4;3.3.4 Cross-Sensitivity;46
6.3.5;3.3.5 Room Temperature Sensing;48
6.4;3.4 Applications of Titania Nanotube Hydrogen Sensors;49
6.4.1;3.4.1 Self-Cleaning Sensors;49
6.4.2;3.4.2 Hydrogen Sensing for Biomedical Applications: Transcutaneous Sensors;54
6.4.3;3.4.3 Sensor Networks;57
6.4.3.1;3.4.3.1 Design of the Sensor Network;58
6.5;3.5 Summary;65
6.6;References;65
7;Alternative Nanostructured Sensors: Nanowires, Nanobelts, and Novel Nanostructures;67
7.1;4.1 Introduction;67
7.2;4.2 Novel Nanostructures;68
7.3;4.3 Methods of Synthesis and Fabrication;68
7.3.1;4.3.1 Physical Vapor Deposition;68
7.3.1.1;4.3.1.1 Laser-Assisted Catalytic Growth;68
7.3.1.2;4.3.1.2 Thermal Evaporation;70
7.3.1.3;4.3.1.3 Radiofrequency Magnetron Sputtering;72
7.3.2;4.3.2 Chemical Vapor Deposition;72
7.3.2.1;4.3.2.1 Thermal Chemical Vapor Deposition;72
7.3.2.2;4.3.2.2 Metal-Organic Chemical Vapor Deposition (MOCVD);74
7.3.3;4.3.3 Solution-Based Chemistry;75
7.3.3.1;4.3.3.1 Hydrothermal Synthesis;75
7.3.3.2;4.3.3.2 Hydrolysis;76
7.3.3.3;4.3.3.3 Aqueous Chemical Growth;77
7.3.4;4.3.4 Other Synthesis Techniques;77
7.3.4.1;4.3.4.1 Electrospinning;77
7.4;4.4 Sensing Applications: Biological Sensing and Chemical Sensing;78
7.4.1;4.4.1 Biological Sensing;78
7.4.2;4.4.2 Chemical Sensing;81
7.5;References;85
8;Nanosensors: Controlling Transduction Mechanisms at the Nanoscale Using Metal Oxides and Semiconductors;87
8.1;5.1 Introduction;87
8.2;5.2 Nanosensors;89
8.3;5.3 Nanomaterial Synthesis for Sensing;91
8.4;5.4 Nanosensing Mechanism Features;99
8.5;5.5 Nanosensors Based on Electrical Interaction Through the Surface;100
8.6;5.6 Nanosensors Based on Photon Capture: Photodetection at the Nanoscale;121
8.7;5.7 Nanosensors Based on Plasmon Resonance: Influence of the Dielectric Constant Variations at the Nanoscale;126
8.8;5.8 Nanosensors Based on Mechanical Resonances: Influence of Small Mass Changes onto Nanostructures;128
8.9;5.9 Summary;131
8.10;References;131
9;Quantum Dots for Sensing;138
9.1;6.1 Introduction. Quantum Technology and Properties: Quantum Wells, Wires and Dots;138
9.2;6.2 Synthesis of Quantum Dots;143
9.2.1;6.2.1 QD Growth onto Semiconductor Wafers;144
9.2.2;6.2.2 Nanocrystal Synthesis;147
9.2.3;6.2.3 Core-Shell Nanocrystal Quantum Dots;149
9.2.4;6.2.4 Functionalization of Nanocrystal Quantum Dots;152
9.3;6.3 Sensing Applications;154
9.3.1;6.3.1 Ion Indicators;155
9.3.2;6.3.2 In vitro Biological Applications;159
9.3.2.1;6.3.2.1 Immunoassays;160
9.3.2.2;6.3.2.2 DNA Detection;161
9.3.2.3;6.3.2.3 Cell detection;164
9.3.3;6.3.3 In vivo Biological Applications;170
9.3.3.1;6.3.3.1 Non-selective Imaging;170
9.3.3.2;6.3.3.2 Targeted Imaging;174
9.3.3.3;6.3.3.3 Drawbacks of QD Nanocrystals for Bio-applications;176
9.3.4;6.3.4 Other Applications;177
9.4;6.4 Conclusion;180
9.5;Bibliography;181
10;Nanostructured Magnetic Sensors;189
10.1;7.1 Introduction: Magnetic Sensors and Nanostructures;189
10.1.1;7.1.3 About Magnetic Nanostructures;190
10.1.2;7.1.3 About Technological Applications of Magnetic Nanostructures;192
10.2;7.2 Sensing Elements: Synthesis and Magnetic Characterization;195
10.2.1;7.2.1 Magnetic Nanoparticles: Synthesis;195
10.2.1.1;7.2.1.1 Chemical Synthesis of Magnetic Nanoparticles;195
10.2.1.2;7.2.1.2 Synthesis of Hybrid Nanoparticles;197
10.2.1.2.1;Organic/Inorganic;198
10.2.1.2.2;Inorganic/Inorganic;198
10.2.1.2.3;Self-Assembling Supracrystals;200
10.2.2;7.2.2 Magnetic Nanowires and Films: Fabrication Techniques;201
10.2.2.1;7.2.2.1 Fabrication of Nanowires;201
10.2.2.1.1;Lithography Methods;202
10.2.2.1.2;Using Templates and Self-Assembly;204
10.2.2.2;7.2.2.2 Fabrication of Thin Films;206
10.2.2.2.1;Physical Vapour Deposition (PVD);206
10.2.2.2.2;Sputtering;207
10.2.2.2.3;Evaporation;208
10.2.2.2.4;Molecular Beam Epitaxy (MBE);208
10.2.2.2.5;Chemical Vapour Deposition, CVD;208
10.2.3;7.2.3 Characterization of Magnetic Nanostructures;209
10.2.3.1;7.2.3.1 Structure Characterization;209
10.2.3.1.1;X-Ray Diffraction;210
10.2.3.1.2;X-Ray Fluorescence;210
10.2.3.1.3;X-Ray Absorption Spectroscopy;211
10.2.3.2;7.2.3.2 Techniques to Determine Magnetic Properties of Nanostructures;211
10.2.3.2.1;Hysteresis Properties: Vibrating Sample and SQUID Magnetometers and Kerr Effect;211
10.2.3.2.2;Magnetic Imaging;214
10.2.3.2.2.1;Magneto-optical Effects;214
10.2.3.2.2.2;Electron Microscopies;214
10.2.3.2.2.3;Scanning Techniques;216
10.2.3.2.2.4;Magnetic Resonance Imaging;218
10.2.3.2.3;Magnetoresistance;219
10.3;7.3 Magnetic Sensors and Applications;221
10.3.1;7.3.1 Biological Applications Based on Magnetic Nanoparticles;222
10.3.1.1;7.3.1.1 Biosensors for Detection and Separation;222
10.3.1.2;7.3.1.2 Magnetic Nanoparticles as Contrast Agents in MRI Imaging;227
10.3.1.2.1;Other Applications;229
10.3.2;7.3.2 Magnetic Nanowires and Sensors for Magnetic Scanning Techniques;229
10.3.2.1;7.3.2.1 Sensors Based on Nanowires Grown into Ordered Membranes;229
10.3.2.2;7.3.2.2 Magnetic Sensors Based on Scanning Techniques;232
10.3.2.2.1;Magnetic Force and Magnetic Resonance Force Microscopies;232
10.3.2.2.2;MicroSQUIDs;235
10.3.2.2.3;Hall Probe Microscopy;237
10.3.3;7.3.3 Magnetic Sensors Based on Bidimensional Magnetic Nanostructures;239
10.3.3.1;7.3.3.1 Magnetic Recording and Related Sensors;240
10.3.3.2;7.3.3.2 Other Sensors Based on Bidimensional Nanostructures;246
10.3.3.2.1;Magnetic Computer Sensors for Biomolecules Studies;246
10.3.3.2.2;Sensors Based on Magneto-optical Effects;248
10.3.3.2.3;Gas and Humidity Sensors Applications;249
10.4;7.4 Final Remarks;249
10.5;References;250
11;Encapsulated Probes;259
11.1;8.1 Introduction and Rationale;259
11.2;8.2 Brief Overview of Optical Probes;259
11.3;8.3 Toxicity of Probe Materials;261
11.4;8.4 Immobilization Requirements;262
11.5;8.5 Encapsulation Strategies;263
11.6;8.6 Progress and Opportunities for Encapsulated Probes;264
11.6.1;8.6.1 Liposomes;264
11.6.2;8.6.2 PEBBLEs (Probes Encapsulated by Biologically Localized Embedding);265
11.6.3;8.6.3 Polyelectrolyte Multilayers;265
11.6.4;8.6.4 Multilayer Capsules;268
11.6.5;8.6.5 Enzymatic Sensors;270
11.7;8.7 Summary and Conclusions;274
11.8;References;274
12;Optical Fiber Sensors Based on Nanostructured Coatings;280
12.1;9.1 Introduction;280
12.2;9.2 Methods of Fabrication of Nanostructured Films on Optical Fibers: the Layer-by-Layer Technique;281
12.3;9.3 Types of Devices and Sensing Mechanisms;284
12.3.1;9.3.1 Interferometric Cavities: NanoFabry-Perots;284
12.3.2;9.3.2 Microgratings;290
12.3.3;9.3.3 Coatings on Conical Surfaces;290
12.3.4;9.3.4 Coatings onto Long-Period Gratings;292
12.3.5;9.3.5 Coatings on Hollow Core Fibers;293
12.4;9.4 Sensing Applications;295
12.4.1;9.4.1 Humidity;295
12.4.2;9.4.2 Temperature;297
12.4.3;9.4.3 Gas and Volatile Organic Compounds;298
12.4.4;9.4.4 pH and Chemical Species;299
12.4.5;9.4.5 Biological Recognition;302
12.5;9.5 Conclusions;303
12.6;References;303
13;Nanostructured Flexible Materials: Metal Rubbertrade Strain Sensors;307
13.1;10.1 Introduction;307
13.2;10.2 Molecular-Level Self-Assembly Processing: Long-Range Ordered Langmuir-Blodgett (LB) Films and Self-Assembled Monolayers (SAMs);307
13.2.1;10.2.1 Surfactants and Floating Monolayers;308
13.2.2;10.2.2 Surface Pressure;309
13.2.3;10.2.3 Monolayer Transfer on Solid Surfaces;310
13.2.4;10.2.4 From LB Films to SAMs;311
13.3;10.3 Layer by Layer: Toward Shorter-Range Ordered Structures;312
13.3.1;10.3.1 Electrostatic-Based Self-Assembly;312
13.3.2;10.3.2 Factors Influencing Adsorption and Structure;314
13.3.3;10.3.3 LBL Advantages;315
13.4;10.4 Metal Rubbertrade Manufacturing;315
13.5;10.5 Metal Rubbertrade Material Properties;316
13.6;10.6 Metal Rubbertrade Strain Sensors;318
13.7;10.7 Summary;320
13.8;References;320
14;Index;322



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.