- Neu
Awodey Cartesian Cubical Model Categories
Erscheinungsjahr 2026
ISBN: 978-3-032-08730-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 140 Seiten
Reihe: Lecture Notes in Mathematics
ISBN: 978-3-032-08730-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book introduces the category of Cartesian cubical sets and endows it with a Quillen model structure using ideas coming from Homotopy type theory. In particular, recent constructions of cubical systems of univalent type theory are used to determine abstract homotopical semantics of type theory. The celebrated univalence axiom of Voevodsky plays a key role in establishing the basic laws of a model structure, showing that the homotopical interpretation of constructive type theory is not merely possible, but in a certain, precise sense also necessary for the validity of univalence. Fully rigorous proofs are given in diagrammatic style, using the language and methods of categorical logic and topos theory. The intended readers are researchers and graduate students in homotopy theory, type theory, and category theory.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Chapter 1. Introduction.- Chapter 2. Cartesian cubical sets.- Chapter 3. The cofibration weak factorization system.- Chapter 4. The fibration weak factorization system.- Chapter 5. The weak equivalences.- Chapter 6. The Frobenius condition.- Chapter 7. A universal fibration.- Chapter 8. The equivalence extension property.- Chapter 9. The fibration extension property.




