Barros / Freitas | Automatic Design of Decision-Tree Induction Algorithms | E-Book | www.sack.de
E-Book

E-Book, Englisch, 184 Seiten

Reihe: SpringerBriefs in Computer Science

Barros / Freitas Automatic Design of Decision-Tree Induction Algorithms


2015
ISBN: 978-3-319-14231-9
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 184 Seiten

Reihe: SpringerBriefs in Computer Science

ISBN: 978-3-319-14231-9
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark



Presents a detailed study of the major design components that constitute a top-down decision-tree induction algorithm, including aspects such as split criteria, stopping criteria, pruning and the approaches for dealing with missing values. Whereas the strategy still employed nowadays is to use a 'generic' decision-tree induction algorithm regardless of the data, the authors argue on the benefits that a bias-fitting strategy could bring to decision-tree induction, in which the ultimate goal is the automatic generation of a decision-tree induction algorithm tailored to the application domain of interest. For such, they discuss how one can effectively discover the most suitable set of components of decision-tree induction algorithms to deal with a wide variety of applications through the paradigm of evolutionary computation, following the emergence of a novel field called hyper-heuristics.'Automatic Design of Decision-Tree Induction Algorithms' would be highly useful for machine learning and evolutionary computation students and researchers alike.

Barros / Freitas Automatic Design of Decision-Tree Induction Algorithms jetzt bestellen!

Weitere Infos & Material


1;Contents;7
2;Notations;10
3;1 Introduction;12
3.1;1.1 Book Outline;15
3.2;References;16
4;2 Decision-Tree Induction;17
4.1;2.1 Origins;17
4.2;2.2 Basic Concepts;18
4.3;2.3 Top-Down Induction;19
4.3.1;2.3.1 Selecting Splits;21
4.3.2;2.3.2 Stopping Criteria;39
4.3.3;2.3.3 Pruning;40
4.3.4;2.3.4 Missing Values;46
4.4;2.4 Other Induction Strategies;47
4.5;2.5 Chapter Remarks;50
4.6;References;50
5;3 Evolutionary Algorithms and Hyper-Heuristics;56
5.1;3.1 Evolutionary Algorithms;56
5.1.1;3.1.1 Individual Representation and Population Initialization;58
5.1.2;3.1.2 Fitness Function;60
5.1.3;3.1.3 Selection Methods and Genetic Operators;61
5.2;3.2 Hyper-Heuristics;63
5.3;3.3 Chapter Remarks;65
5.4;References;65
6;4 HEAD-DT: Automatic Design of Decision-Tree Algorithms;68
6.1;4.1 Introduction;69
6.2;4.2 Individual Representation;70
6.2.1;4.2.1 Split Genes;70
6.2.2;4.2.2 Stopping Criteria Genes;72
6.2.3;4.2.3 Missing Values Genes;72
6.2.4;4.2.4 Pruning Genes;73
6.2.5;4.2.5 Example of Algorithm Evolved by HEAD-DT;75
6.3;4.3 Evolution;76
6.4;4.4 Fitness Evaluation;78
6.5;4.5 Search Space;81
6.6;4.6 Related Work;82
6.7;4.7 Chapter Remarks;83
6.8;References;84
7;5 HEAD-DT: Experimental Analysis;86
7.1;5.1 Evolving Algorithms Tailored to One Specific Data Set;87
7.2;5.2 Evolving Algorithms from Multiple Data Sets;92
7.2.1;5.2.1 The Homogeneous Approach;93
7.2.2;5.2.2 The Heterogeneous Approach;108
7.2.3;5.2.3 The Case of Meta-Overfitting;130
7.3;5.3 HEAD-DT's Time Complexity;132
7.4;5.4 Cost-Effectiveness of Automated Versus Manual Algorithm Design;132
7.5;5.5 Examples of Automatically-Designed Algorithms;134
7.6;5.6 Is the Genetic Search Worthwhile?;135
7.7;5.7 Chapter Remarks;136
7.8;References;148
8;6 HEAD-DT: Fitness Function Analysis;149
8.1;6.1 Performance Measures;149
8.1.1;6.1.1 Accuracy;150
8.1.2;6.1.2 F-Measure;150
8.1.3;6.1.3 Area Under the ROC Curve;151
8.1.4;6.1.4 Relative Accuracy Improvement;151
8.1.5;6.1.5 Recall;152
8.2;6.2 Aggregation Schemes;152
8.3;6.3 Experimental Evaluation;153
8.3.1;6.3.1 Results for the Balanced Meta-Training Set;154
8.3.2;6.3.2 Results for the Imbalanced Meta-Training Set;164
8.3.3;6.3.3 Experiments with the Best-Performing Strategy;172
8.4;6.4 Chapter Remarks;177
8.5;References;178
9;7 Conclusions;179
9.1;7.1 Limitations;180
9.2;7.2 Opportunities for Future Work;181
9.2.1;7.2.1 Extending HEAD-DT's Genome: New Induction Strategies, Oblique Splits, Regression Problems;181
9.2.2;7.2.2 Multi-objective Fitness Function;181
9.2.3;7.2.3 Automatic Selection of the Meta-Training Set;182
9.2.4;7.2.4 Parameter-Free Evolutionary Search;182
9.2.5;7.2.5 Solving the Meta-Overfitting Problem;183
9.2.6;7.2.6 Ensemble of Automatically-Designed Algorithms;183
9.2.7;7.2.7 Grammar-Based Genetic Programming;184
9.3;References;184



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.