E-Book, Englisch, Band 116, 376 Seiten
Reihe: Topics in Applied Physics
Bernas Materials Science with Ion Beams
1. Auflage 2009
ISBN: 978-3-540-88789-8
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 116, 376 Seiten
Reihe: Topics in Applied Physics
ISBN: 978-3-540-88789-8
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark
Materials science is the prime example of an interdisciplinary science. It - compasses the ?elds of physics, chemistry, material science, electrical en- neering, chemical engineering and other disciplines. Success has been o- standing. World-class accomplishments in materials have been recognized by NobelprizesinPhysicsandChemistryandgivenrisetoentirelynewtechno- gies. Materials science advances have underpinned the technology revolution that has driven societal changes for the last ?fty years. Obviouslytheendisnotinsight!Futuretechnology-basedproblemsd- inatethecurrentscene.Highonthelistarecontrolandconservationofenergy and environment, water purity and availability, and propagating the inf- mation revolution. All fall in the technology domain. In every case proposed solutions begin with new forms of materials, materials processing or new arti?cial material structures. Scientists seek new forms of photovoltaics with greater e?ciency and lower cost. Water purity may be solved through surface control, which promises new desalination processes at lower energy and lower cost. Revolutionary concepts to extend the information revolution reside in controlling the 'spin' of electrons or enabling quantum states as in quantum computing. Ion-beam experts make substantial contributions to all of these burgeoning sciences.
Harry Bernas is Research Director at the French National Research Center (CNRS). He has held various positions related to interdisciplinary research in CNRS, and was founding coordinator of the European COST program on Plasma- and Ion- Surface Engineering. He has authored over 200 papers in international journals and holds several patents. His main research interests are the study and control of materials nonequilibrium properties in metallic and oxide glasses, metal hydrides, semiconductors and metals under irradiation. In recent years, he has concentrated on the control via ion irradiation of magnetic properties in metallic nanostructures, and on the beam-controlled synthesis and optical properties of semiconductor and metal nanoclusters in glasses. He can be reached at bernas@csnsm.in2p3.fr.
Autoren/Hrsg.
Weitere Infos & Material
1;Foreword;6
2;Preface;8
2.1;References;10
3;Contents;11
4;Fundamental Concepts of Ion-Beam Processing;16
4.1;Introduction: Basic Mechanisms of Ion-Solid Interactions;16
4.1.1;Electronic Excitation;17
4.1.2;Nuclear Collisions;18
4.1.2.1;Defect Production;18
4.1.2.2;Sputtering;19
4.1.2.3;Ion-Beam Mixing;20
4.1.3;Thermal Spikes;20
4.1.4;Radiation-Enhanced Diffusion;23
4.1.5;Primary Recoil Spectrum;24
4.2;Irradiation-Induced Stresses and Surface Effects;26
4.2.1;Defect Accumulation;27
4.2.2;Collective Behavior: Irradiation-Induced Viscous Flow;28
4.3;Phase Transformations;30
4.3.1;Order-Disorder Alloys: Cu3Au;30
4.3.2;Phase-Separating Alloys: AgCu;33
4.3.3;Amorphization;35
4.4;Phase Transformations: Effective Temperature Model;37
4.4.1;Phase Decomposition;38
4.4.2;Order-Disorder;39
4.4.3;Beyond the Effective Temperature Criterion;39
4.5;Conclusions;40
4.6;References;41
4.7;Index;43
5;Precipitate and Microstructural Stability in Alloys Subjected to Sustained Irradiation;44
5.1;Introduction;44
5.2;Elementary Processes in Metallic Alloys Subjected to Irradiation;45
5.3;Precipitate Evolution in Irradiated Alloys;48
5.3.1;Experimental Observations;48
5.3.2;Models with Unidirectional Ballistic Mixing;50
5.3.3;Models Including Full Account of Forced Mixing;53
5.4;Order-Disorder Transformations;58
5.5;Radiation-Induced Segregation and Precipitation;59
5.6;Defect Clustering and Related Microstructural Evolutions;60
5.7;Conclusion;62
5.8;References;63
5.9;Index;66
6;Spontaneous Patterning of Surfaces by Low-Energy Ion Beams;68
6.1;Introduction;68
6.2;Varieties of Ion-Induced Pattern Formation;70
6.2.1;Bradley-Harper Ripples (Ion-Induced Orientation);70
6.2.2;Ehrlich-Schwoebel Patterns (Diffusion-Controlled Orientation);72
6.2.3;Low-Temperature or Athermal BH Behavior;73
6.2.4;Nonroughening Behavior;73
6.2.5;Other Types of Patterning (Quantum Dots, Kinetic Roughening);73
6.2.6;Kinetic Phase Diagram for Cu(001);74
6.3;Competing Kinetic Mechanisms and the Linear Instability Model;75
6.3.1;BH Instability Model;75
6.3.2;Diffusional Roughening and the ES Instability;80
6.3.3;Other Regimes of Patterning - Beyond the Instability Model;81
6.4;References;83
6.5;Index;86
7;Ion-Beam-Induced Amorphization and Epitaxial Crystallization of Silicon;87
7.1;Introduction;87
7.2;Overview of Ion-Beam-Induced Amorphization;90
7.2.1;The Effect of Temperature on Defect Accumulation;90
7.2.2;Preferential Amorphization at Surfaces and Defect Bands;92
7.2.3;Mechanisms of Amorphization: The Role of Defects;93
7.2.4;Layer-by-Layer Amorphization;96
7.3;Overview of Ion-Beam-Induced Epitaxial Crystallization: Experiment and Modeling;97
7.3.1;IBIEC Temperature Dependence;97
7.3.2;IBIEC Observations and Dependencies;98
7.3.3;Ion-Cascade Effects on IBIEC: The Role of Atomic Displacements and Mobile Defects;103
7.3.4;IBIEC Models;111
7.3.5;Interface Evolution;112
7.4;IBIEC and Silicide Precipitation;118
7.4.1;Precipitate Distribution;119
7.4.2;Phase Composition, Structure and Orientation;119
7.5;Conclusion;120
7.6;References;121
7.7;Index;124
8;Voids and Nanocavities in Silicon;126
8.1;Introduction;126
8.2;Formation of Nanocavities and Voids by Ion Irradiation;128
8.2.1;Nanocavity Formation by H and He Irradiation;129
8.2.2;Irradiation-Induced Vacancy Excess and Void Formation;132
8.3;Interaction of Impurities with Nanocavities;134
8.3.1;Interactions at Low Levels of Metal Contamination;135
8.3.2;Interactions at High Metal Concentration Levels;138
8.3.3;Mechanisms for Metal Trapping and Precipitation at Cavities;141
8.4;Trapping and Precipitation at So-Called Rp/2 Defects;145
8.5;Stability Under Subsequent Irradiation;148
8.5.1;Interaction of Defects with Voids and Nanocavities;149
8.5.2;Preferential Amorphization;151
8.5.3;Shrinkage and Removal of Open-Volume Defects During Amorphization;154
8.6;Conclusions;156
8.7;References;156
8.8;Index;159
9;Damage Formation and Evolution in Ion-Implanted Crystalline Si;160
9.1;Introduction;160
9.2;Point-Like Defects Formation and Evolution;167
9.2.1;Point Defect Properties;169
9.2.1.1;Vacancy and Vacancy-Type Defects;169
9.2.1.2;Interstitial and Interstitial-Type Defects;172
9.2.2;Point-Defect Generation: Electron Irradiation vs. Ion Implantation and Role of Impurities;175
9.2.3;Room Temperature Diffusion of Point-Like Defects;181
9.3;Evolution from Point to Secondary Defects;185
9.4;Formation and Annihilation of I Clusters and Extended Defects;194
9.4.1;Evolution from Secondary Defects to Interstitial Clusters;194
9.4.2;Interstitial Cluster Formation and Dissociation;198
9.4.3;Interstitial Cluster Characterization;200
9.4.4;Extended Defect Characterization;205
9.4.5;Transition from Defect Clusters to Extended Defects;207
9.4.6;Simulation of Defect Evolution;211
9.5;Conclusion;215
9.6;References;217
9.7;Index;223
10;Point Defect Kinetics and Extended-Defect Formation during Millisecond Processing of Ion-Implanted Silicon;226
10.1;Conclusions;236
10.2;References;237
10.3;Index;238
11;Magnetic Properties and Ion Beams: Why and How;240
11.1;Introduction;240
11.2;Magnetic Anisotropy in Ultrathin Films;241
11.3;Controlling Thin-Film Magnetic Anisotropy by Ion Irradiation;243
11.3.1;The Strategy;243
11.3.2;Modeling Ballistic Recoil-Induced Structural Modifications;244
11.3.3;Experimental Measurements of Structural Modifications;246
11.3.4;Experimental Variation of the Magnetic Anisotropy;249
11.3.5;Relation Between Structural and Magnetic Anisotropies;250
11.3.6;Magnetic Reversal Properties Under Irradiation;252
11.3.7;A Magnetic Anisotropy Phase Diagram;256
11.3.8;Summary;258
11.4;Magnetization Reversal in Irradiation-Fabricated Nano-Structures;259
11.5;Ion Beam-Induced Ordering of Intermetallic Alloys;261
11.6;A Word on Control of Exchange-Bias Systems via Ion Irradiation;263
11.7;References;263
11.8;Index;267
12;Structure and Properties of Nanoparticles Formed by Ion Implantation;268
12.1;Introduction;268
12.2;Nanoparticle Synthesis;270
12.3;Microstructures;273
12.4;Optoelectronic Properties;276
12.4.1;Nonlinear Optical Materials;276
12.4.2;Light-Emitting Materials;280
12.4.3;Magnetic Materials;285
12.4.4;Smart Nanocomposites;289
12.5;Controlling Nanocrystal Size, Spacing, and Location;292
12.6;Conclusion;293
12.7;References;294
12.8;Index;298
13;Metal Nanoclusters for Optical Properties;299
13.1;Introduction;299
13.2;Optical Properties of Metal Nanoclusters;300
13.3;Metal-Nanoparticle Synthesis by Ion Implantation;304
13.3.1;The Issue of Size Distribution;304
13.3.2;Ion Implantation for Plasmonic Nanostructures;306
13.3.3;Nucleation and Growth of Metal Nanoparticles;306
13.3.4;Linear (LO) and Nonlinear Optical (NLO) Properties;313
13.4;Core-Satellite for Nonlinear Optical Properties;315
13.5;Plasmonic Nanostructures;317
13.6;Conclusions;321
13.7;References;322
13.8;Index;327
14;Ion Beams in the Geological Sciences;329
14.1;Introduction;329
14.2;Diffusion;330
14.2.1;Applications;330
14.2.2;Experiments;334
14.3;Alteration Processes;337
14.4;Radiation Effects in Minerals;342
14.5;Conclusion;352
14.6;References;353
14.7;Index;355
15;Ion-Beam Modification of Polymer Surfaces for Biological Applications;356
15.1;Introduction;356
15.2;Surface Properties Drive Biological System Interactions;358
15.2.1;Role of Surface Free Energy (SFE);359
15.2.2;Surface Termination;361
15.2.3;Electronic Structure and Electrical Properties of Surfaces;362
15.3;Ion Beams and Surface Properties;362
15.3.1;Ion-Dose-Dependent Chemistry;363
15.3.2;Beam-Induced Modification of Surface Properties Relevant to Biological Interactions;365
15.3.2.1;The "Extrinsic Mechanism";366
15.3.2.2;The "Intrinsic Mechanism";367
15.3.2.2.1;Surface Chemical Modification;367
15.3.2.2.2;Heterogeneous Nanometric Phases;369
15.3.2.3;Surface Grafting of Chemical Functionalities;371
15.4;Biological Response of Ion-Beam Modified Polymer Surfaces;373
15.5;Conclusions;376
15.6;References;376
15.7;Index;379
16;Index;381




