Bewersdorff | Algebra für Einsteiger | Buch | 978-3-658-26151-1 | sack.de

Buch, Deutsch, 242 Seiten, Format (B × H): 148 mm x 210 mm, Gewicht: 346 g

Reihe: Lehrbuch

Bewersdorff

Algebra für Einsteiger

Von der Gleichungsauflösung zur Galois-Theorie
6. Auflage 2019
ISBN: 978-3-658-26151-1
Verlag: Springer

Von der Gleichungsauflösung zur Galois-Theorie

Buch, Deutsch, 242 Seiten, Format (B × H): 148 mm x 210 mm, Gewicht: 346 g

Reihe: Lehrbuch

ISBN: 978-3-658-26151-1
Verlag: Springer


Dieses Buch ist eine leicht verständliche Einführung in die Algebra, die den historischen und konkreten Aspekt in den Vordergrund rückt. Der rote Faden ist eines der klassischen und fundamentalen Probleme der Algebra: Bereits vor 4000 Jahren wurden quadratische Gleichungen gelöst. Im 16. Jahrhundert fand man allgemeine Lösungsformeln für Gleichungen dritten und vierten Grades, aber entsprechende Bemühungen für Gleichungen fünften Grades schlugenfehl. Nach fast dreihundertjähriger Suche führte dies schließlich zur Begründung der so genannten Galois-Theorie: Mit ihrer Hilfe kann festgestellt werden, ob eine Gleichung mittels geschachtelter Wurzelausdrücke lösbar ist. Das Buch liefert eine gute Motivation für die moderne Galois-Theorie, die den Studierenden oft so abstrakt und schwer erscheint.

Gemäß der Intention des Buchs, auch die Geschichte der Algebra zu berücksichtigen, wurden in dieser Neuauflage diverse Faksimiles ergänzt. Begleitend zu den Faksimiles wurde insbesondere das erste Kapitel erheblich erweitert, so dass die maßgeblichen kulturhistorischen Kontexte der Epochen bis Cardano deutlicher werden. Schließlich wurden zum Kapitel über Artins Beweis des Hauptsatzes der Galois-Theorie einige Anmerkungen zum historischen und mathematischen Hintergrund hinzugefügt.


Bewersdorff Algebra für Einsteiger jetzt bestellen!

Zielgruppe


Upper undergraduate


Autoren/Hrsg.


Weitere Infos & Material


Kubische Gleichungen.- Casus irreducibilis, die Geburtsstunde der komplexen Zahlen.- Biquadratische Gleichungen.- Gleichungen n-ten Grades und ihre Eigenschaften.- Die Suche nach weiteren Auflösungsformeln.- Gleichungen, die sich im Grad reduzieren lassen.- Die Konstruktion regelmäßiger Vielecke.- Auflösung von Gleichungen fünften Grades.- Die Galois-Gruppe einer Gleichung.- Algebraische Strukturen und Galois-Theorie.- Artins Version des Hauptsatzes der Galois-Theorie.


Dr. Jörg Bewersdorff promovierte im Fach Mathematik an der Universität Bonn.
Ebenfalls im Programm von Springer Spektrum sind sein populäres Buch "Glück, Logik und Bluff" und sein Lesebuch "Statistik - wie und warum sie funktioniert".



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.