E-Book, Englisch, 243 Seiten
Reihe: Springer Finance
Bhar / Hamori Empirical Techniques in Finance
1. Auflage 2005
ISBN: 978-3-540-27642-5
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 243 Seiten
Reihe: Springer Finance
ISBN: 978-3-540-27642-5
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark
Autoren/Hrsg.
Weitere Infos & Material
1;Acknowledgements;7
2;Table of Contents;9
3;1 Introduction;13
4;2 Basic Probability Theory and Markov Chains;17
4.1;2.1 Random Variables;17
4.2;2.2 Function of Random Variable;19
4.3;2.3 Normal Random Variable;20
4.4;2.4 Lognormal Random Variable;21
4.5;2.5 Markov Chains;22
4.6;2.6 Passage Time;26
4.7;2.7 Examples and Exercises;28
4.8;References;29
5;3 Estimation Techniques;31
5.1;3.1 Models, Parameters and Likelihood - An Overview;31
5.2;3.2 Maximum Likelihood Estimation and Covariance Matrix of Parameters;32
5.3;3.3 MLE Example - Classical Linear Regression;34
5.4;3.4 Dependent Observations;35
5.5;3.5 Prediction Error Decomposition;36
5.6;3.6 Serially Correlated Errors - Overview;37
5.7;3.7 Constrained Optimization and the Covariance Matrix;39
5.8;3.8 Examples and Exercises;40
5.9;References;41
6;4 Non-Parametric Method of Estimation;43
6.1;4.1 Background;43
6.2;4.2 Non-Parametric Approach;44
6.3;4.3 Kernel Regression;45
6.4;4.4 Illustration 1 (EViews);47
6.5;4.5 Optimal Bandwidth Seiection;48
6.6;4.6 Illustration 2 (EViews);48
6.7;4.7 Examples and Exercises;50
6.8;References;51
7;5 Unit Root, Cointegration and Related Issues;53
7.1;5.1 Stationary Process;53
7.2;5.2 Unit Root;56
7.3;5.3 Dickey-Fuller Test;58
7.4;5.4 Cointegration;61
7.5;5.5 Residual-based Cointegration Test;62
7.6;5.6 Unit Root in a Regression Model;63
7.7;5.7 Application to Stocic Markets;64
7.8;References;66
8;6 VAR Modeling;67
8.1;6.1 Stationary Process;67
8.2;6.2 Granger Causality;69
8.3;6.3 Cointegration and Error Correction;71
8.4;6.4 Johansen Test;73
8.5;6.5 LA-VAR;74
8.6;6.6 Application to Stocic Prices;76
8.7;References;77
9;7 Time Varying Volatility Models;79
9.1;7.1 Background;79
9.2;7.2 ARCH and GARCH Models;80
9.3;7.3 TGARCH and EGARCH Models;83
9.4;7.4 Causality-in-Variance Approach;86
9.5;7.5 Information Flow between Price Change and Trading Volume;89
9.6;References;93
10;8 State-Space Models (I);95
10.1;8.1 Background;95
10.2;8.2 Classical Regression;95
10.3;8.3 Important Time Series Processes;98
10.4;8.4 Recursive Least Squares;101
10.5;8.5 State-Space Representation;103
10.6;8.6 Examples and Exercises;106
10.7;References;115
11;9 State-Space Models (II);117
11.1;9.1 Likelihood Function Maximization;117
11.2;9.2 EM Algorithm;120
11.3;9.3 Time Varying Parameters and Changing Conditional Variance (EViews);123
11.4;9.4 GARCH and Stochastic Variance Model for Exchange Rate (EViews);125
11.5;9.5 Examples and Exercises;128
11.6;References;138
12;10 Discrete Time Real Asset Valuation Model;139
12.1;10.1 Asset Price Basics;139
12.2;10.2 Mining Project Background;141
12.3;10.3 Example 1;142
12.4;10.4Example2;143
12.5;10.5 Example 3;145
12.6;10.6 Example4;147
12.7;Appendix;150
12.8;References;152
13;11 Discrete Time Model of Interest Rate;153
13.1;11.1 Preliminaries of Short Rate Lattice;153
13.2;11.2 Forward Recursion for Lattice and Elementary Price;157
13.3;11.3 Matching the Current Term Structure;160
13.4;11.4 Immunization: Application of Short Rate Lattice;161
13.5;11.5 Valuing Callable Bond;164
13.6;11.6 Exercises;165
13.7;References;166
14;12 Global Bubbles in Stock Markets and Linkages;167
14.1;12.1 Introduction;167
14.2;12.2 Speculative Bubbles;168
14.3;12.3 Review of Key Empirical Papers;170
14.3.1;12.3.1 Flood and Garber (1980);170
14.3.2;12,3.2 West (1987);172
14.3.3;12.3.3 Ikeda and Shibata (1992);173
14.3.4;12.3.4 Wu (1997);175
14.3.5;12.3.5 Wu (1995);176
14.4;12.4 New Contribution;176
14.5;12.5 Global Stock Market Integration;177
14.6;12.6 Dynamic Linear Models for Bubble Solutions;179
14.7;12.7 Dynamic Linear Models for No-Bubble Solutions;184
14.8;12.8 Subset VAR for Linkages between Markets;186
14.9;12.9 Results and Discussions;187
14.10;12.10 Summary;198
14.11;References;199
15;13 Forward FX Market and the Risk Premium;205
15.1;13.1 Introduction;205
15.2;13.2 Alternative Approach to Model Risk Premia;207
15.3;13.3 The Proposed Model;208
15.4;13.4 State-Space Framework;213
15.5;13.5 Brief Description of Wolff/Cheung Model;216
15.6;13.6 Application of the Model and Data Description;217
15.7;13.7 Summary and Conclusions;221
15.8;Appendix;222
15.9;References;223
16;14 Equity Risk Premia from Derivative Prices;227
16.1;14.1 Introduction;227
16.2;14.2 The Theory behind the Modeling Framework;229
16.3;14.3 The Continuous Time State-Space Framework;232
16.4;14.4 Setting Up The Filtering Framework;235
16.5;14.5 The Data Set;240
16.6;14.6 Estimation Results;240
16.7;14.7 Summary and Conclusions;247
16.8;References;248
17;Index;251
18;About the Authors;254
(p.31)
4.1 Background
In some financial applications we may face a functional relationship between two variables Y and X without the benefit of a structural model to restrict the parametric form of the relation. In these situations, we can apply nonparametric estimation techniques to capture a wide variety of non- Hnearities without recourse to any one particular specification of the nonUnear relation. In contrast to a highly structured or parametric approach to estimating non-linearities, nonparametric estimation requires few assumptions about the nature of the non-linearities.
This is not to say that the approach is free of drawbacks. To begin with, the highly data-intensive nature of the process can make it somewhat costly. Further, nonparametric estimation is poorly suited to small samples and has been found to over fit the data. A regression curve describes the general relationship between an explanatory variable X and a response variable Y. Having observed X, the average value of Y is given by the regression function. The form of the regression function may teil us where higher Y-values are to be expected for certain values of X or where a special sort of dependence is indicated. A pre-selected parametric model might be too restricted to fit unexpected features of the data. The term "non-parametric" refers to the flexible functional form of the regression curve.
The non-parametric approach to a regression curve serves four main functions. First, it provides a versatile method for exploring a general relationship between two variables. Second, it gives predictions of observations yet to be made without reference to a fixed parametric model. Third, it provides a tool for finding spurious observations by studying the influence of isolated points. Fourth, it constitutes a flexible method for substituting missing values or interpolating between adjacent X values. The flexibility of the method is extremely helpful in a preliminary and exploratory Statistical analysis of a data set. When no a priori model Information about the regression curve is available, non-parametric analysis can help in providing simple parametric formulations of the regression relationship.




