Bhatia | Machine Learning with Python | Buch | 978-1-009-17024-6 | www.sack.de

Buch, Englisch, 850 Seiten, Format (B × H): 150 mm x 150 mm, Gewicht: 1351 g

Bhatia

Machine Learning with Python

Principles and Practical Techniques
Erscheinungsjahr 2026
ISBN: 978-1-009-17024-6
Verlag: Cambridge University Press

Principles and Practical Techniques

Buch, Englisch, 850 Seiten, Format (B × H): 150 mm x 150 mm, Gewicht: 1351 g

ISBN: 978-1-009-17024-6
Verlag: Cambridge University Press


Machine learning has become a dominant problem-solving technique in the modern world, with applications ranging from search engines and social media to self-driving cars and artificial intelligence. This lucid textbook presents the theoretical foundations of machine learning algorithms, and then illustrates each concept with its detailed implementation in Python to allow beginners to effectively implement the principles in real-world applications. All major techniques, such as regression, classification, clustering, deep learning, and association mining, have been illustrated using step-by-step coding instructions to help inculcate a 'learning by doing' approach. The book has no prerequisites, and covers the subject from the ground up, including a detailed introductory chapter on the Python language. As such, it is going to be a valuable resource not only for students of computer science, but also for anyone looking for a foundation in the subject, as well as professionals looking for a ready reckoner.

Bhatia Machine Learning with Python jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Acknowledgements; Preface; Chapter 1. Beginning with Machine Learning; Chapter 2. Introduction to Python; Chapter 3. Data Pre-processing; Chapter 4. Implementing Data Pre-processing in Python; Chapter 5. Simple Linear Regression; Chapter 6. Implementing Simple Linear Regression; Chapter 7. Multiple Linear Regression and Polynomial Linear Regression; Chapter 8. Implementing Multiple Linear Regression and Polynomial Linear Regression; Chapter 9. Classification; Chapter 10. Support Vector Machine Classifier; Chapter 11. Implementing Classification; Chapter 12. Clustering; Chapter 13. Implementing Clustering; Chapter 14. Association Mining; Chapter 15. Implementing Association Mining; Chapter 16. Artificial Neural Network; Chapter 17. Implementing the Artificial Neural Network; Chapter 18. Deep Learning and Convolutional Neural Network; Chapter 19. Implementing Convolutional Neural Network; Chapter 20. Recurrent Neural Network; Chapter 21. Implementing Recurrent Neural Network; Chapter 22. Genetic Algorithm for Machine Learning; Index.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.