Bi / Xue / Zhang | Genetic Programming for Image Classification | E-Book | sack.de
E-Book

E-Book, Englisch, Band 24, 258 Seiten, eBook

Reihe: Adaptation, Learning, and Optimization

Bi / Xue / Zhang Genetic Programming for Image Classification

An Automated Approach to Feature Learning
1. Auflage 2021
ISBN: 978-3-030-65927-1
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

An Automated Approach to Feature Learning

E-Book, Englisch, Band 24, 258 Seiten, eBook

Reihe: Adaptation, Learning, and Optimization

ISBN: 978-3-030-65927-1
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book offers several new GP approaches to feature learning for image classification. Image classification is an important task in computer vision and machine learning with a wide range of applications. Feature learning is a fundamental step in image classification, but it is difficult due to the high variations of images. Genetic Programming (GP) is an evolutionary computation technique that can automatically evolve computer programs to solve any given problem. This is an important research field of GP and image classification. No book has been published in this field. This book shows how different techniques, e.g., image operators, ensembles, and surrogate, are proposed and employed to improve the accuracy and/or computational efficiency of GP for image classification. The proposed methods are applied to many different image classification tasks, and the effectiveness and interpretability of the learned models will be demonstrated. This book is suitable as a graduate andpostgraduate level textbook in artificial intelligence, machine learning, computer vision, and evolutionary computation.
Bi / Xue / Zhang Genetic Programming for Image Classification jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Computer Vision and Machine Learning.- Evolutionary Computation and Genetic Programming.- Multi-Layer Representation for Binary Image Classification.- Evolutionary Deep Learning Using GP with Convolution Operators.- GP with Image Descriptors for Learning Global and Local Features.- GP with Image-Related Operators for Feature Learning.- GP for Simultaneous Feature Learning and Ensemble Learning.- Random Forest-Assisted GP for Feature Learning.- Conclusions and Future Directions.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.