Börger / Stärk | Abstract State Machines | E-Book | www.sack.de
E-Book

E-Book, Englisch, 438 Seiten, eBook

Börger / Stärk Abstract State Machines

A Method for High-Level System Design and Analysis
2003
ISBN: 978-3-642-18216-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

A Method for High-Level System Design and Analysis

E-Book, Englisch, 438 Seiten, eBook

ISBN: 978-3-642-18216-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Börger / Stärk Abstract State Machines jetzt bestellen!

Zielgruppe


Professional/practitioner

Weitere Infos & Material


1 Introduction.- 1.1 Goals of the Book and Contours of its Method.- 1.1.1 Stepwise Refinable Abstract Operational Modeling.- 1.1.2 Abstract Virtual Machine Notation.- 1.1.3 Practical Benefits.- 1.1.4 Harness Pseudo-Code by Abstraction and Refinement.- 1.1.5 Adding Abstraction and Rigor to UML Models.- 1.2 Synopsis of the Book.- 2 ASM Design and Analysis Method.- 2.1 Principles of Hierarchical System Design.- 2.1.1 Ground Model Construction (Requirements Capture).- 2.1.2 Stepwise Refinement (Incremental Design).- 2.1.3 Integration into Software Practice.- 2.2 Working Definition.- 2.2.1 Basic ASMs.- 2.2.2 Definition.- 2.2.3 Classification of Locations and Updates.- 2.2.4 ASM Modules.- 2.2.5 Illustration by Small Examples.- 2.2.6 Control State ASMs.- 2.2.7 Exercises.- 2.3 Explanation by Example: Correct Lift Control.- 2.3.1 Exercises.- 2.4 Detailed Definition (Math. Foundation).- 2.4.1 Abstract States and Update Sets.- 2.4.2 Mathematical Logic.- 2.4.3 Transition Rules and Runs of ASMs.- 2.4.4 The Reserve of ASMs.- 2.4.5 Exercises.- 2.5 Notational Conventions.- 3 Basic ASMs.- 3.1 Requirements Capture by Ground Models.- 3.1.1 Fundamental Questions to be Asked.- 3.1.2 Illustration by Small Use Case Models.- 3.1.3 Exercises.- 3.2 Incremental Design by Refinements.- 3.2.1 Refinement Scheme and its Specializations.- 3.2.2 Two Refinement Verification Case Studies.- 3.2.3 Decomposing Refinement Verifications.- 3.2.4 Exercises.- 3.3 Microprocessor Design Case Study.- 3.3.1 Ground Model DLXseq.- 3.3.2 Parallel Model DLXpar Resolving Structural Hazards.- 3.3.3 Verifying Resolution of Structural Hazards (DLXpar).- 3.3.4 Resolving Data Hazards (Refinement DLXdata).- 3.3.5 Exercises.- 4 Structured ASMs (Composition Techniques).- 4.1 Turbo ASMs (seq, iterate, submachines, recursion).- 4.1.1 Seq and Iterate (Structured Programming).- 4.1.2 Submachines and Recursion (Encapsulation and Hiding).- 4.1.3 Analysis of Turbo ASM Steps.- 4.1.4 Exercises.- 4.2 Abstract State Processes (Interleaving).- 5 Synchronous Multi-Agent ASMs.- 5.1 Robot Controller Case Study.- 5.1.1 Production Cell Ground Model.- 5.1.2 Refinement of the Production Cell Component ASMs.- 5.1.3 Exercises.- 5.2 Real-Time Controller (Railroad Crossing Case Study).- 5.2.1 Real-TimeProcess Control Systems.- 5.2.2 Railroad Crossing Case Study.- 5.2.3 Exercises.- 6 Asynchronous Multi-Agent ASMs.- 6.1 Async ASMs: Definition and Network Examples.- 6.1.1 Mutual Exclusion.- 6.1.2 Master-Slave Agreement.- 6.1.3 Network Consensus.- 6.1.4 Load Balance.- 6.1.5 Leader Election and Shortest Path.- 6.1.6 Broadcast Acknowledgment (Echo).- 6.1.7 Phase Synchronization.- 6.1.8 Routing Layer Protocol for Mobile Ad Hoc Networks.- 6.1.9 Exercises.- 6.2 Embedded System Case Study.- 6.2.1 Light Control Ground Model.- 6.2.2 Signature (Agents and Their State).- 6.2.3 User Interaction (Manual Control).- 6.2.4 Automatic Control.- 6.2.5 Failure and Service.- 6.2.6 Component Structure.- 6.2.7 Exercises.- 6.3 Time-Constrained Async ASMs.- 6.3.1 Kermit Case Study (Alternating Bit/Sliding Window).- 6.3.2 Processor-Group-Membership Protocol Case Study.- 6.3.3 Exercises.- 6.4 Async ASMs with Durative Actions.- 6.4.1 Protocol Verification using Atomic Actions.- 6.4.2 Refining Atomic to Durative Actions.- 6.4.3 Exercises.- 6.5 Event-Driven ASMs.- 6.5.1 UML Diagrams for Dynamics.- 6.5.2 Exercises.- 7 Universal Design and Computation Model.- 7.1 Integrating Computation and Specification Models.- 7.1.1 Classical Computation Models.- 7.1.2 System Design Models.- 7.1.3 Exercises.- 7.2 Sequential ASM Thesis (A Proof from Postulates).- 7.2.1 Gurevich’s Postulates for Sequential Algorithms.- 7.2.2 Bounded-Choice Non-Determinism.- 7.2.3 Critical Terms for ASMs.- 7.2.4 Exercises.- 8 Tool Support for ASMs.- 8.1 Verification of ASMs.- 8.1.1 Logic for ASMs.- 8.1.2 Formalizing the Consistency of ASMs.- 8.1.3 Basic Axioms and Proof Rules of the Logic.- 8.1.4 Why Deterministic Transition Rules?.- 8.1.5 Completeness for Hierarchical ASMs.- 8.1.6 The Henkin Model Construction.- 8.1.7 An Extension with Explicit Step Information.- 8.1.8 Exercises.- 8.2 Model Checking of ASMs.- 8.3 Execution of ASMs.- 9 History and Survey of ASM Research.- 9.1 The Idea of Sharpening Turing’s Thesis.- 9.2 Recognizing the Practical Relevance of ASMs.- 9.3 Testing the Practicability of ASMs.- 9.3.1 Architecture Design and Virtual Machines.- 9.3.2 Protocols.- 9.3.3 Why use ASMs for Hw/Sw Engineering?.- 9.4 Making ASMs Fit for their Industrial Deployment.- 9.4.1 Practical Case Studies.- 9.4.2 Industrial Pilot Projects and Further Applications.- 9.4.3 Tool Integration.- 9.5 Conclusion and Outlook.- References.- List of Problems.- List of Figures.- List of Tables.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.