Bonnans | Convex and Stochastic Optimization | E-Book | sack.de
E-Book

E-Book, Englisch, 311 Seiten, eBook

Reihe: Universitext

Bonnans Convex and Stochastic Optimization


Erscheinungsjahr 2019
ISBN: 978-3-030-14977-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 311 Seiten, eBook

Reihe: Universitext

ISBN: 978-3-030-14977-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This textbook provides an introduction to convex duality for optimization problems in Banach spaces, integration theory, and their application to stochastic programming problems in a static or dynamic setting. It introduces and analyses the main algorithms for stochastic programs, while the theoretical aspects are carefully dealt with. The reader is shown how these tools can be applied to various fields, including approximation theory, semidefinite and second-order cone programming and linear decision rules.This textbook is recommended for students, engineers and researchers who are willing to take a rigorous approach to the mathematics involved in the application of duality theory to optimization with uncertainty.
Bonnans Convex and Stochastic Optimization jetzt bestellen!

Zielgruppe


Upper undergraduate


Autoren/Hrsg.


Weitere Infos & Material


1 A convex optimization toolbox.- 2 Semide?nite and semiin?nite programming.- 3 An integration toolbox.- 4 Risk measures.- 5 Sampling and optimizing.- 6 Dynamic stochastic optimization.- 7 Markov decision processes.- 8 Algorithms.- 9 Generalized convexity and transportation theory.- References.- Index.


J.F. Bonnans is an expert in convex analysis and dynamic optimization, both in the deterministic and stochastic setting. His main contributions deal with the sensitivity analysis of optimization problems, high order optimality conditions, optimal control and stochastic control. He worked on quantization methods for stochastic programming problems, on the approximate dynamic programming for problems with monotone value function, and on sparse linear regression.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.