Bubley | Randomized Algorithms: Approximation, Generation, and Counting | Buch | 978-1-4471-1180-1 | sack.de

Buch, Englisch, 152 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 277 g

Reihe: Distinguished Dissertations

Bubley

Randomized Algorithms: Approximation, Generation, and Counting


Softcover Nachdruck of the original 1. Auflage 2001
ISBN: 978-1-4471-1180-1
Verlag: Springer

Buch, Englisch, 152 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 277 g

Reihe: Distinguished Dissertations

ISBN: 978-1-4471-1180-1
Verlag: Springer


Randomized Algorithms discusses two problems of fine pedigree: counting and generation, both of which are of fundamental importance to discrete mathematics and probability. When asking questions like "How many are there?" and "What does it look like on average?" of families of combinatorial structures, answers are often difficult to find -- we can be blocked by seemingly intractable algorithms. Randomized Algorithms shows how to get around the problem of intractability with the Markov chain Monte Carlo method, as well as highlighting the method's natural limits. It uses the technique of coupling before introducing "path coupling" a new technique which radically simplifies and improves upon previous methods in the area.
Bubley Randomized Algorithms: Approximation, Generation, and Counting jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1 Mathematical Background.- 1.1 Computational Complexity.- 1.2 Probability.- 1.3 Markov Chains.- 1.4 Graph Theory.- 2 Techniques for Sampling and Approximate Sampling.- 2.1 Introduction.- 2.2 Direct Sampling.- 2.3 Markov Chain Method.- 3 Approximate Counting.- 3.1 Parsimonious Reductions.- 3.2 Counting Directly.- 3.3 Counting and Sampling.- 3.4 The Markov Chain Monte Carlo Method.- 4 Applications: Coupling.- 4.1 Hypergraph Colourings.- 4.2 Sink-Free Graph Orientations and Twice-Sat.- 4.3 Log-Concave Sampling, and the Volume of a Convex Body.- Intermezzo: Path Coupling.- 5 Applications: Path Coupling.- 5.1 Introduction.- 5.2 Twice-Sat Revisited.- 5.3 Sink- and Source-Free Graph Orientations.- 5.4 Totally Edge Cyclic Orientations.- 5.5 Independent Sets: The Conserved Hard-Core Model.- 5.6 Independent Sets: The Non-Conserved Hard-Core Model.- 5.7 Linear Extensions of a Partial Order.- 5.8 Graph Colouring.- 5.9 The Extended Potts Framework.- 5.10 Graph Colouring Revisited.- 6 Directions for Future Work.- 6.1 Breaking Thresholds.- 6.2 Beyond Self-Reducibility.- 6.3 Mixed Methods for Approximate Counting.- 6.4 Faster Reductions from Approximate Counting to Approximate Sampling.- 6.5 Anti-ferromagnetic Models.- 6.6 Log-Concave Sampling via Path Coupling.- Appendices.- A An Application of Dobrushin’s Uniqueness Criterion.- B A Hierarchy of #SAT Restrictions.- B.1 Introduction.- B.2 A Summary of Known Results.- B.2.1 Easy Exact Counting.- B.2.2 Hard Exact Counting.- B.2.3 Easy Approximate Counting.- B.2.4 Hard Approximate Counting.- B.3 Summary and Conclusions.- C Equivalence of Transposition Distance to Spearman’s Footrule.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.