E-Book, Englisch, Band 23, 474 Seiten
Calisesi / Bonnet / Gray Solar Variability and Planetary Climates
1. Auflage 2007
ISBN: 978-0-387-48341-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 23, 474 Seiten
Reihe: Space Sciences Series of ISSI
ISBN: 978-0-387-48341-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book provides an updated overview of the processes determining the influence of solar forcing on climate. It discusses in particular the most recent developments regarding the role of aerosols in the climate system and the new insights that could be gained from the investigation of terrestrial climate analogues. The book's structure mirrors that of the ISSI workshop held in Bern in June 2005.
Autoren/Hrsg.
Weitere Infos & Material
1;TABLE OF CONTENTS;7
2;FOREWORD;12
3;INTRODUCTION;15
3.1;1. Background;15
3.2;2. Solar Irradiance;17
3.3;3. Observations of Solar Influence on the Atmosphere;18
3.4;4. Atmospheric Dynamics and Modelling;19
3.5;5. Clouds and Aerosols;20
3.6;6. Conclusions;21
3.7;References;22
4;ASSESSING SOLAR VARIABILITY;26
4.1;1. Introduction;26
4.2;2. A Controversial Issue;27
4.3;3. Measuring Solar Variability;28
4.4;4. Reconstructing Solar Variability;30
4.5;5. Conclusion;32
4.6;References;33
5;SOLAR VARIABILITY OF POSSIBLE RELEVANCE FOR PLANETARY CLIMATES;34
5.1;1. Introduction;34
5.2;2. Short-Term Total Solar Irradiance Variations;35
5.3;3. Short-Term Solar Spectral Irradiance Variations;37
5.4;4. Longer-Term Solar Variations;38
5.5;5. Solar Variability Over Millenia;43
5.6;6. Summary and Outlook;43
5.7;Acknowledgements;44
5.8;References;44
6;MEASUREMENT OF TOTAL AND SPECTRAL SOLAR IRRADIANCE;47
6.1;1. Introduction;47
6.2;2. Measurement of Solar Irradiance;48
6.3;3. Today’s Measurement and Prospects for the Future;54
6.4;Acknowledgements;57
6.5;References;58
7;SOLAR IRRADIANCE VARIABILITY SINCE 1978;60
7.1;1. Introduction;60
7.2;2. Radiometric Corrections;62
7.3;3. The PMOD Composite;66
7.4;4. Comparison with a 3-Component Proxy Model;69
7.5;5. Conclusions;71
7.6;Acknowledgements;71
7.7;References;72
8;SOLAR VARIABILITY OVER THE PAST SEVERAL MILLENNIA;73
8.1;1. Introduction;73
8.2;2. Solar Forcing: Orbital Parameters;75
8.3;3. Solar Variability;77
8.4;4. Reconstruction of Long-Term Solar Variability;78
8.5;5. Solar Variability and Solar Forcing;82
8.6;Acknowledgements;84
8.7;References;84
9;SOLAR AND HELIOSPHERIC MODULATION OF GALACTIC COSMIC RAYS;86
9.1;1. Introduction;86
9.2;2. Transport of Charged Particles in the Heliosphere;88
9.3;3. Solar Cycle Variation;93
9.4;4. Summary;95
9.5;References;96
10;WHAT DO COSMOGENIC ISOTOPES TELL US ABOUT PAST SOLAR FORCING OF CLIMATE?;99
10.1;1. Introduction;99
10.2;2. Paleoclimate Evidence for Solar Variability Effects on Climate;101
10.3;3. Direct Cosmic-Ray Effects: Clouds and the Global Electric Circuit;103
10.4;4. The Connection Between Cosmic Rays and TSI on Centennial Time Scales;106
10.5;5. Conclusions;109
10.6;Acknowledgements;109
10.7;References;110
11;OBSERVED LONG-TERM VARIATIONS OF SOLAR IRRADIANCE AT THE EARTH’S SURFACE;114
11.1;1. Introduction;114
11.2;2. Data Compilation and Quality Control;115
11.3;3. Results;116
11.4;4. The Cause of the Secular Variation;128
11.5;Acknowledgements;130
11.6;References;130
12;AEROSOL EFFECTS ON CLOUDS AND CLIMATE;132
12.1;1. Introduction;132
12.2;2. Conclusions;138
12.3;Acknowledgements;138
12.4;References;139
13;SATELLITE OBSERVATIONS OF NATURAL AND ANTHROPOGENIC AEROSOL EFFECTS ON CLOUDS AND CLIMATE;141
13.1;1. Introduction;141
13.2;2. Natural Versus Anthropogenic Aerosol;142
13.3;3. Aerosol Effect on Shallow Cloud Development;145
13.4;4. Summary;148
13.5;References;148
14;AEROSOL-CLOUD INTERACTIONS CONTROL OF EARTH RADIATION AND LATENT HEAT RELEASE BUDGETS;150
14.1;1. The Major Role of Clouds and Precipitation in the Earth’s Energy Budget;150
14.2;2. Quantifying the Relative Magnitudes of the Albedo and Cloud Cover Effects;152
14.3;3. The Mechanism by which Aerosols Dominate the Convective Regime of the MBL;152
14.4;4. Aerosols Forcing of Deep Convective Clouds;154
14.5;5. Conclusions;156
14.6;References;157
15;ATMOSPHERIC ION-INDUCED AEROSOL NUCLEATION;159
15.1;1. Introduction;159
15.2;2. Measurements;162
15.3;3. Kinetic Model of Ion-Induced Nucleation;164
15.4;4. Results;164
15.5;5. Summary and Outlook;166
15.6;References;166
16;ATMOSPHERIC AEROSOL AND CLOUD CONDENSATION NUCLEI FORMATION: A POSSIBLE INFLUENCE OF COSMIC RAYS?;168
16.1;1. Introduction;168
16.2;2. Atmospheric Ions;171
16.3;3. Ion Induced Sulphuric Acid Nucleation;173
16.4;4. Atmospheric Sulphuric Acid;176
16.5;5. Observations of Large Cluster Ions in the Upper Troposphere;179
16.6;6. Aerosol Growth;180
16.7;7. Conclusions;182
16.8;Acknowledgements;183
16.9;References;183
17;ON THE RESPONSE OF THE CLIMATE SYSTEM TO SOLAR FORCING;186
17.1;1. Introduction;186
17.2;2. The Mechanisms of Climate Forcing and Response: Geographically- Dependent Feedbacks;188
17.3;3. Dynamical Contributions;190
17.4;4. A Recent Model Experiment;192
17.5;5. Concluding Remarks;193
17.6;References;194
18;DETECTION AND ATTRIBUTION OF CLIMATE CHANGE, AND UNDERSTANDING SOLAR INFLUENCE ON CLIMATE;197
18.1;1. Introduction and Motivation;197
18.2;2. Basic Logic of D&A;201
18.3;3. Methods;202
18.4;4. Results;204
18.5;5. Conclusions;207
18.6;References;207
19;THE CLIMATE RESPONSE TO THE ASTRONOMICAL FORCING;210
19.1;1. Calculating Orbital Parameters;210
19.2;2. Insolation;213
19.3;3. Challenges Posed by Quaternary Glaciations;215
19.4;4. The LLN Model to Study Ice Volume Variations;216
19.5;5. The Future of Palæoclimate Modelling;218
19.6;Key to symbols;219
19.7;References;220
20;REGIONAL RESPONSE OF THE CLIMATE SYSTEM TO SOLAR FORCING: THE ROLE OF THE OCEAN;224
20.1;1. Introduction;224
20.2;2. Thermodynamical Processes;226
20.3;3. Transport of Temperature Anomalies by the Ocean;227
20.4;4. Changes in Ocean Currents;228
20.5;5. Conclusions;230
20.6;Acknowledgements;231
20.7;References;231
21;DISCUSSION OF THE SOLAR UV/PLANETARYWAVE MECHANISM;233
21.1;1. Introduction;233
21.2;2. A Little Bit of History;234
21.3;3. Progress on the Solar UV/PlanetaryWave Mechanism;236
21.4;4. Some Closing Remarks;239
21.5;References;241
22;SOLAR VARIATION AND STRATOSPHERIC RESPONSE;243
22.1;1. Introduction;243
22.2;2. Data and Methods;244
22.3;3. Variability in the Stratosphere;244
22.4;4. Influences of the 11-Year Sunspot Cycle on the Stratosphere;246
22.5;5. The QBO – Solar Cycle Relationship Throughout the Year;251
22.6;Acknowledgements;254
22.7;References;255
23;SIGNATURE OF THE 11-YEAR CYCLE IN THE UPPER ATMOSPHERE;257
23.1;1. Introduction;257
23.2;2. Our Observational Results;258
23.3;3. Comparison with Other Datasets;261
23.4;4. Comparison with a Mechanistic Model;263
23.5;5. Conclusions;267
23.6;Acknowledgements;267
23.7;References;268
24;THE MIDDLE ATMOSPHERIC OZONE RESPONSE TO THE 11-YEAR SOLAR CYCLE;269
24.1;1. Introduction;269
24.2;2. Extraction of the 11-Year Solar Signal from Observational Data Sets;271
24.3;3. Observed and Modeled Solar Signal in Total Ozone;274
24.4;4. Vertically-Resolved Observed and Modeled Solar Signal;275
24.5;5. Discussion;276
24.6;Acknowledgements;279
24.7;References;279
25;INFLUENCE OF THE SOLAR CYCLE ON THE GENERAL CIRCULATION OF THE STRATOSPHERE AND UPPER TROPOSPHERE;283
25.1;1. Introduction;283
25.2;2. Interannual Variations of Dynamical Structure;284
25.3;3. Systematic Changes Coherent with Solar Activity;287
25.4;4. Origin of the Solar Correlation;291
25.5;5. Closing;296
25.6;Acknowledgements;298
25.7;References;298
26;MULTIDECADAL SIGNAL OF SOLAR VARIABILITY IN THE UPPER TROPOSPHERE DURING THE 20TH CENTURY;300
26.1;1. Introduction;300
26.2;2. Data and Methods;302
26.3;3. Results;305
26.4;4. Discussion;308
26.5;5. Conclusions;309
26.6;Acknowledgements;310
26.7;References;310
27;THE ROLE OF DYNAMICS IN SOLAR FORCING;313
27.1;1. Introduction;313
27.2;2. Downward Transmission of the Solar Signal;314
27.3;3. ExtratropicalWinter;316
27.4;4. Tropical Summer;317
27.5;5. Discussion and Concluding Remarks;321
27.6;Acknowledgements;322
27.7;References;322
28;SOLAR INFLUENCES ON DYNAMICAL COUPLING BETWEEN THE STRATOSPHERE AND TROPOSPHERE;325
28.1;1. Introduction;325
28.2;2. Response of Tropospheric ZonalWind to Solar Variability;326
28.3;3. Impact of Stratospheric Heating on the Troposphere of a Simplified GCM;327
28.4;4. Investigation of Mechanisms Using an Ensemble of Model Spin-ups;334
28.5;5. Conclusions;336
28.6;References;337
29;THE RESPONSE OF THE MIDDLE ATMOSPHERE TO SOLAR CYCLE FORCING IN THE HAMBURG MODEL OF THE NEUTRAL AND IONIZED ATMOSPHERE;339
29.1;1. Introduction;339
29.2;2. Model Description and Simulation Setup;340
29.3;3. The Zonal Mean Atmospheric Response to Solar Variability;341
29.4;4. The Zonal Structure of the Temperature Response;345
29.5;5. Discussion;347
29.6;Acknowledgements;348
29.7;References;348
30;A POSSIBLE TRANSFER MECHANISM FOR THE 11-YEAR SOLAR CYCLE TO THE LOWER STRATOSPHERE;351
30.1;1. Introduction;351
30.2;2. The Solar Cycle Signal in ERA-40 Analysis;353
30.3;3. Mechanistic Modelling;356
30.4;4. General Circulation Modelling;360
30.5;5. Discussion;362
30.6;References;363
31;RECENT SPACE DATA;365
31.1;1. Introduction;365
31.2;2. Impact of Solar Proton Events on Atmospheric Composition;366
31.3;3. New Generation Atmospheric Chemistry Space Instruments;367
31.4;4. New Developments in Stratospheric Chemistry and Dynamics;373
31.5;Acknowledgements;373
31.6;Reference;373
32;SATELLITE MEASUREMENTS OF MIDDLE ATMOSPHERIC IMPACTS BY SOLAR PROTON EVENTS IN SOLAR CYCLE 23;374
32.1;1. Introduction;374
32.2;2. Solar Proton Flux and Production of HOx and NOy;376
32.3;3. Satellite Measurements of NOy Constituent Changes from SPEs;377
32.4;4. Satellite Measurements of ClO and HOCl Constituents Change from SPEs;378
32.5;5. Satellite Measurements of Ozone Changes from SPEs;379
32.6;6. Model Predictions of SPE Influences;379
32.7;7. Conclusions;381
32.8;Acknowledgements;382
32.9;References;382
33;IMPACT OF SOLAR ACTIVITY ON STRATOSPHERIC OZONE AND NO2 OBSERVED BY GOMOS/ ENVISAT;385
33.1;1. Introduction;385
33.2;2. Instrument;386
33.3;3. Data Processing;387
33.4;4. October 2003 Solar Proton Event;388
33.5;5. AustralWinter 2003;389
33.6;6. Conclusion;393
33.7;Acknowledgements;393
33.8;References;393
34;THE STRATOSPHERIC AND MESOSPHERIC NOy IN THE 2002– 2004 POLAR WINTERS AS MEASURED BY MIPAS/ ENVISAT;395
34.1;1. Introduction;395
34.2;2. MIPAS Data;397
34.3;3. Variability in NO2;398
34.4;4. Variability in HNO3;403
34.5;5. Discussion and Conclusions;405
34.6;Acknowledgements;406
34.7;References;407
35;EARLY DATA FROM AURA AND CONTINUITY FROM UARS AND TOMS;409
35.1;1. Introduction;409
35.2;2. Science Objectives of the Aura Mission;411
35.3;3. Spacecraft and Instrument Descriptions;414
35.4;4. Summary;421
35.5;References;421
36;WHAT DO WE KNOWABOUT THE CLIMATE OF TERRESTRIAL PLANETS?;423
37;SOLAR VARIABILITY AND CLIMATE IMPACT ON TERRESTRIAL PLANETS;427
37.1;1. Introduction;427
37.2;2. The Earth;428
37.3;3. Climate on Venus;431
37.4;4. Mars;433
37.5;5. Conclusions;435
37.6;Acknowledgements;435
37.7;References;435
38;CLIMATE VARIABILITY ON VENUS AND TITAN;437
38.1;1. Introduction;437
38.2;2. The Climate on Venus;439
38.3;3. Climate Change on Titan;444
38.4;4. Summary and Conclusions;446
38.5;References;447
39;THE ORBITAL FORCING OF CLIMATE CHANGES ON MARS;448
39.1;1. Introduction;448
39.2;2. Today’s MarsWater Cycle;449
39.3;3. Mars and Its Shaking Orbit. . .;451
39.4;4. Precession Changes;453
39.5;5. MarsWater Cycle at High Obliquity;456
39.6;6. From High to Low Obliquity;459
39.7;7. Conclusion;461
39.8;Acknowledgements;461
39.9;References;462




