Casciati / Roberts | Mathematical Models for Structural Reliability Analysis | Buch | 978-0-8493-9631-1 | sack.de

Buch, Englisch, 384 Seiten, Format (B × H): 162 mm x 241 mm, Gewicht: 663 g

Reihe: Mathematical Modeling

Casciati / Roberts

Mathematical Models for Structural Reliability Analysis


1. Auflage 1996
ISBN: 978-0-8493-9631-1
Verlag: CRC Press

Buch, Englisch, 384 Seiten, Format (B × H): 162 mm x 241 mm, Gewicht: 663 g

Reihe: Mathematical Modeling

ISBN: 978-0-8493-9631-1
Verlag: CRC Press


Mathematical Models for Structural Reliability Analysis offers mathematical models for describing load and material properties in solving structural engineering problems. Examples are provided, demonstrating how the models are implemented, and the limitations of the models are clearly stated. Analytical solutions are also discussed, and methods are clearly distinguished from models. The authors explain both theoretical models and practical applications in a clear, concise, and readable fashion.

Casciati / Roberts Mathematical Models for Structural Reliability Analysis jetzt bestellen!

Zielgruppe


Professional

Weitere Infos & Material


Stochastic Process Models (F. Casciati and M. Di Paola)IntroductionThe Orthogonal-Increment ModelThe Correlation-Stationary Model Time-Invariant Linear Systems Models of Common UseThe Evolutionary Model Time-Invariant Linear SystemsMarkov Processes A Model of Common Use Itô Stochastic Differential Equation Some Examples Approximation of Mechanical Processes: Physical versus Itô EquationsThe Random Pulse Train Model The Delta-Correlated Model Fokker Planck and Moment Equations for Parametric Delta Correlated Input Quasi-Linear Systems Simulation of Delta Correlated Processes and Response Simulation of Normal White Noise Input and Response Orthogonal-Increment Model for Delta Correlated ProcessesMultidegree-of-Freedom Systems Under Parametric Delta Correlated Input Moment Equation Approach for MDOF Systems Simulation of Multivariate Delta Correlated Processes and ResponseConclusions and ReferencesAppendix Characterization of Random Variables Joint Characterization of Random Variables Operation on Stochastic Processes Kronecker Algebra: Some FundamentalsDimension Reduction and Discretization in Stochastic Problems by Regression Method (O. Ditlevsen)IntroductionLinear RegressionNormal DistributionNon-Gaussian Distributions and Linear RegressionMarginally Transformed Gaussian Processes and FieldsDiscretized Fields Defined by Linear Regression on a Finite Set of Field ValuesDiscretization Defined by Linear Regression on a Finite Set of Linear FunctionalsPoisson Load Field ExampleStochastic Finite Element Methods and Reliability CalculationsClassical versus Statistical-Stochastic Interpolation Formulated on the Basis of the Principle of Maximum LikelihoodComputational Practicability of the Statistical-Stochastic Interpolation MethodField Modeling on the Basis of Measured Noisy DataDiscretization Defined by L


Fabio Casciati, Brian Roberts



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.