E-Book, Englisch, 648 Seiten
Cavaleiro / De Hosson Nanostructured Coatings
1. Auflage 2007
ISBN: 978-0-387-48756-4
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 648 Seiten
Reihe: Nanostructure Science and Technology
ISBN: 978-0-387-48756-4
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book delivers practical insight into a broad range of fields related to hard coatings, from their deposition and characterization up to the hardening and deformation mechanisms allowing the interpretation of results. The text examines relationships between structure/microstructure and mechanical properties from fundamental concepts, through types of coatings, to characterization techniques. The authors explore the search for coatings that can satisfy the criteria for successful implementation in real mechanical applications.
Autoren/Hrsg.
Weitere Infos & Material
1;Contributors;6
2;Foreword;8
3;Acknowledgments;10
4;Contents;11
5;Galileo Comes to the Surface!;21
5.1;1. INTRODUCTION;21
5.2;2. COATINGS;22
5.3;3. CHALLENGES AND OPPORTUNITIES ;24
5.4;4. LEITMOTIV AND OBJECTIVE;41
5.5;ACKNOWLEDGMENTS;43
5.6;REFERENCES;44
6;Size Effects on Deformation and Fracture of Nanostructured Metals;47
6.1;1. INTRODUCTION;47
6.2;2. MECHANICAL TESTING OF NANOSTRUCTURED BULK AND THIN FILM MATERIALS;48
6.3;3. DEFORMATION AND FRACTURE UNDER MICROSTRUCTURAL CONSTRAINT ;54
6.4;4. DEFORMATION UNDER DIMENSIONAL CONSTRAINT;77
6.5;5. CONCLUDING REMARKS;86
6.6;REFERENCES;87
7;Defects and Deformation Mechanisms in Nanostructured Coatings;98
7.1;1. INTRODUCTION;98
7.2;2. DEFORMATION MECHANISMS IN NANOCRYSTALLINE COATINGS: GENERAL VIEW;100
7.3;3. LATTICE DISLOCATION SLIP;102
7.4;4. GRAIN BOUNDARY SLIDING;105
7.5;5. ROTATIONAL DEFORMATION MECHANISMS;109
7.6;6. GRAIN BOUNDARY DIFFUSIONAL CREEP (COBLE CREEP) AND TRIPLE JUNCTION DIFFUSIONAL CREEP;113
7.7;7. INTERACTION BETWEEN DEFORMATION MODES IN NANOCRYSTALLINE COATING MATERIALS: EMISSION OF DISLOCATIONS FROM GRAIN BOUNDARIES;115
7.8;8. DEFECTS AND PLASTIC DEFORMATION RELEASING INTERNAL STRESSES IN NANOSTRUCTURED FILMS AND COATINGS;117
7.9;9. CONCLUDING REMARKS;121
7.10;ACKNOWLEDGMENTS;122
7.11;REFERENCES;122
8;Nanoindentation in Nanocrystalline Metallic Layers: A Molecular Dynamics Study on Size Effects;129
8.1;1. INTRODUCTION;129
8.2;2. ATOMISTIC MODELING;131
8.3;3. THE DEFORMATION MECHANISMS AT THE ATOMIC LEVEL IN NANO- SIZED GRAINS BENEATH THE INDENTER;141
8.4;4. DISCUSSION AND OUTLOOK;158
8.5;REFERENCES;159
9;Electron Microscopy Characterization of Nanostructured Coatings;163
9.1;1. INTRODUCTION;163
9.2;2. EXPERIMENTAL METHODOLOGY AND MATERIALS ;166
9.3;3. MICROSTRUCTURE OF DIAMOND-LIKE CARBON MULTILAYERS ;182
9.4;4. CHARACTERIZATION OF TiN AND TiNÒ(Ti,Al)N MULTILAYERS ;201
9.5;5. OUTLOOK;219
9.6;ACKNOWLEDGMENTS;229
9.7;REFERENCES;229
10;Measurement of Hardness and Young's Modulus by Nanoindentation;236
10.1;1. INTRODUCTION;236
10.2;2. THEORY OF INDENTATION MEASUREMENTS;237
10.3;3. INFLUENCE AND DETERMINATION OF INSTRUMENT COMPLIANCE;246
10.4;4. INFLUENCE AND DETERMINATION OF INDENTER AREA FUNCTION;253
10.5;5. ADDITIONAL CORRECTIONS FOR HIGH-ACCURACY DATA ANALYSIS;259
10.6;6. SPECIFIC PROBLEMS WITH THE MEASUREMENT OF THIN HARD COATINGS ;263
10.7;7. LIMITS FOR COMPARABLE HARDNESS MEASUREMENTS;271
10.8;8. YOUNG'S MODULUS MEASUREMENTS WITH SPHERICAL INDENTERS;275
10.9;ACKNOWLEDGMENTS;278
10.10;REFERENCES;278
11;The Influence of the Addition of a Third Element on the Structure and Mechanical Properties of Transition- Metal- Based Nanostructured Hard Films: Part I- Nitrides;281
11.1;1. INTRODUCTION;281
11.2;2. THE ADDITION OF ALUMINUM TO TM NITRIDES;283
11.3;3. TERNARY NITRIDES WITH TM ELEMENTS FROM THE IV, V, AND VI GROUPS;287
11.4;4. THE SPECIFIC CASE OF THE ADDITION OF Si TO TM NITRIDES;290
11.5;5. ADDITION OF LOW N-AFFINITY ELEMENTS TO TM NITRIDES;294
11.6;6. W-BASED COATINGS ;295
11.7;7. CONCLUSIONS;326
11.8;ACKNOWLEDGMENTS;327
11.9;REFERENCES;327
12;The Influence of the Addition of a Third Element on the Structure and Mechanical Properties of Transition- Metal- Based Nanostructured Hard Films: Part II- Carbides;335
12.1;1. INTRODUCTION;335
12.2;2. AMORPHOUS CARBIDE THIN FILMS DEPOSITED BY SPUTTERING;338
12.3;3. STRUCTURAL MODELS FOR PREDICTION OF AMORPHOUS PHASE FORMATION;338
12.4;4. AMORPHOUS PHASE FORMATION IN TM-TM1- C (TM AND TM1 = TRANSITION METALS) SPUTTERED FILMS ;343
12.5;5. HARDNESS AND YOUNG'S MODULUS OF SPUTTERED TM- TM1- C THIN FILMS ;352
12.6;6. THERMAL STABILITY OF SPUTTERED AMORPHOUS M1- M2- C THIN FILMS;359
12.7;7. CONCLUSIONS;362
12.8;REFERENCES;363
13;Concept for the Design of Superhard Nanocomposites with High Thermal Stability: Their Preparation, Properties, and Industrial Applications;367
13.1;1. INTRODUCTION;367
13.2;2. THE EARLIER WORK;372
13.3;3. SUPERHARD NANOCOMPOSITES IN COMPARISON WITH HARDENING BY ION BOMBARDMENT;375
13.4;4. SUPERHARD NANOCOMPOSITES WITH HIGH THERMAL STABILITY;379
13.5;5. REPRODUCIBILITY OF THE PREPARATION OF SUPERHARD, STABLE NANOCOMPOSITES ;401
13.6;6. MECHANICAL PROPERTIES OF SUPERHARD NANOCOMPOSITES ;410
13.7;7. INDUSTRIAL APPLICATIONS;417
13.8;8. CONCLUSIONS;418
13.9;ACKNOWLEDGMENTS;420
13.10;REFERENCES;420
14;Physical and Mechanical Properties of Hard Nanocomposite Films Prepared by Reactive Magnetron Sputtering;427
14.1;1. INTRODUCTION;427
14.2;2. FORMATION OF NANOCRYSTALLINE AND NANOCOMPOSITE COATINGS;428
14.3;3. MICROSTRUCTURE OF NANOCOMPOSITE COATINGS;433
14.4;4. ROLE OF ENERGY IN THE FORMATION OF NANOSTRUCTURED FILMS;435
14.5;5. ENHANCED HARDNESS;446
14.6;6. ORIGIN OF ENHANCED HARDNESS IN SINGLE- PHASE FILMS;461
14.7;7. CLASSIFICATION OF NANOCOMPOSITES ACCORDING TO THEIR STRUCTURE AND MICROSTRUCTURE;463
14.8;8. MECHANICAL PROPERTIES OF HARD NANOCOMPOSITE COATINGS;465
14.9;9. TRENDS OF FUTURE DEVELOPMENT;470
14.10;ACKNOWLEDGMENTS;473
14.11;REFERENCES;473
15;Thermal Stability of Advanced Nanostructured Wear- Resistant Coatings;484
15.1;1. INTRODUCTION;484
15.2;2. MEASUREMENT TECHNIQUES;485
15.3;3. RECOVERY;490
15.4;4. RECRYSTALLIZATION AND GRAIN GROWTH;500
15.5;5. PHASE SEPARATION IN METASTABLE PSEUDO- BINARY NITRIDES;509
15.6;6. INTERDIFFUSION;515
15.7;7. OXIDATION ;517
15.8;8. CONCLUSIONS AND OUTLOOK;520
15.9;ACKNOWLEDGMENTS;522
15.10;REFERENCES;522
16;Optimization of Nanostructured Tribological Coatings;531
16.1;1. INTRODUCTION;531
16.2;2. THE SIGNIFICANCE OF H/E IN DETERMINING COATING PERFORMANCE;533
16.3;3. PRACTICAL CONSIDERATIONS FOR VAPOR DEPOSITION OF NANOSTRUCTURED COATINGS;537
16.4;4. DESIGN AND MATERIALS CONSIDERATIONS FOR METALLIC- NANOCOMPOSITE AND GLASSY- METAL FILMS ;538
16.5;5. EXAMPLES OF PVD METALLIC NANOSTRUCTURED AND GLASSY FILMS;546
16.6;6. ADAPTIVE COATINGS;551
16.7;7. SUMMARY;553
16.8;REFERENCES;554
17;Synthesis, Structure, and Properties of Superhard Superlattice Coatings;559
17.1;1. INTRODUCTION;559
17.2;2. GROWTH OF SUPERLATTICE FILMS;560
17.3;3. ORIGIN OF SUPERHARDENING;563
17.4;4. MECHANICAL DEFORMATION AND WEAR MECHANISMS;565
17.5;5. CONCLUSIONS;571
17.6;REFERENCES;572
18;Synthesis, Structure, and Applications of Nanoscale Multilayer/ Superlattice Structured PVD Coatings;575
18.1;1. ASPECTS OF INDUSTRIAL DEPOSITION OF NANOSCALE MULTILAYER/ SUPERLATTICE HARD COATINGS;575
18.2;2. INDUSTRIAL APPLICATIONS OF VARIOUS NANOSCALE MULTILAYER/ SUPERLATTICE STRUCTURED PVD COATINGS ;606
18.3;REFERENCES;658
19;Index;665




