Chattopadhyay / Roy / Sengupta | Modelling and Simulation in Science, Technology and Engineering Mathematics | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 749, 666 Seiten

Reihe: Advances in Intelligent Systems and Computing

Chattopadhyay / Roy / Sengupta Modelling and Simulation in Science, Technology and Engineering Mathematics

Proceedings of the International Conference on Modelling and Simulation (MS-17)
1. Auflage 2019
ISBN: 978-3-319-74808-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

Proceedings of the International Conference on Modelling and Simulation (MS-17)

E-Book, Englisch, Band 749, 666 Seiten

Reihe: Advances in Intelligent Systems and Computing

ISBN: 978-3-319-74808-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This volume contains the peer-reviewed proceedings of the International Conference on Modelling and Simulation (MS-17), held in Kolkata, India, 4th-5th November 2017, organized by the Association for the Advancement of Modelling and Simulation Techniques in Enterprises (AMSE, France) in association with the Institution of Engineering Technology (IET, UK), Kolkata Network.  The contributions contained here showcase some recent advances in modelling and simulation across various aspects of science and technology. This book brings together articles describing applications of modelling and simulation techniques in fields as diverse as physics, mathematics, electrical engineering, industrial electronics, control, automation, power systems, energy and robotics.  It includes a special section on mechanical, fuzzy, optical and opto-electronic control of oscillations. It provides a snapshot of the state of the art in modelling and simulation methods and their applications, and will be of interest to researchers and engineering professionals from industry, academia and research organizations.

Surajit Chattopadhyay has obtained B. Sc. Degree in Physics Honours from Ramakrishna Mission Vidyamandir (Belur Math), University of Calcutta in 1998, and then B. Tech., M. Tech. & Ph. D. (Technology) Degree in electrical engineering from Department of Applied Physics of University of Calcutta in 2001, 2003, 2010 respectively. He has obtained CEng from Engineering Council, UK in 2013. He has authored/coauthored around hundred papers published in international and national journals and conferences and four books (also with Springer). Seven papers have been selected as 'Best Paper' in international level. He has visited many countries for technical interaction like in Lyon (France), Kuala Lumpur (Malaysia), Dhaka (Bangladesh), London & Stevenage (UK) and Negombo (Sri Lanka) and presented his work in different international forums. Presently, he served as Dean (Student Welfare), Academic Coordinator and Associate Professor of Electrical Engineering in Ghani Khan Choudhury Institute of Engineering and Technology (under Ministry of HRD, Govt. of India). He served as Hon. Secretary of the Institution of Engineering and Technology (UK), Kolkata Network from 2013 to 2016 and now Executive Committee Member of the Network. His field of interest includes electric power quality, fault diagnosis, power system protection, signal analysis, robotics application and UAV.   Tamal Roy received his Bachelor of Technology in Electrical Engineering and Master of Technology in Mechatronics Engineering from West Bengal University of Technology, Kolkata in 2005 and 2008 respectively. In 2008, he joined the Department of Electrical Engineering at Hooghly Engineering and Technology College as a Lecturer. Since 2011, he has been working as an Assistant Professor at the Department of Electrical Engineering, MCKV Institute of Engineering. He was awarded his PhD in 2016 in Robust Control oriented LFT modelling of nonlinear MIMO System from Jadavpur University. His current research interests include modelling and the robust control of the non-linear systems, model reference adaptive control etc   Samarjit Sengupta holds a B.Sc, B.Tech, M.Tech, and Ph.D from the University of Calcutta, Kolkata, India. He is currently a professor of electrical engineering in the Department of Applied Physics at the University of Calcutta. He has published 130 journal papers and eight books on various topics of electrical engineering. His main research interests include power quality instrumentation, power system stability, and security and power system protection. He is a fellow of IET and IETE, as well as a senior member of IEEE. He is former Chairman of IET (UK) Kolkata Network.   Christian Berger-Vachon was born in Lyon, France, in 1944. He received the B.E. degree in electrical engineering from the University of Lyon, France, in 1965, got an engineering degree in Lyon (INSA 1967), a Ph.D. degree in Sciences from the university of Lyon, in 1975 and a MD Degree in 1980. In 1974, he joined the Department of Electrical Engineering, University of Lyon, as a Lecturer, and in 1989 he was named Professor. He was given the title of emeritus Professor in 2013 and since then allowed to continue his research activity in the university. His current research interests include signal processing in electrical machines and in hearing aid devices, and also the construction of models in close connection with the patients' behavior. He is also involved in sports mechanics and in sports medicine. He is the General Secretary of AMSE, an international association concerned with the edition of scientific journals and with the organization of scientific conferences throughout the world. He is the vice-chairman of IFRATH a French Association concerned with the use of assistive devices for handicapped people. He was the recipient of the 'Academic Palms' awarded by the French government for his academic career in 2014.

Chattopadhyay / Roy / Sengupta Modelling and Simulation in Science, Technology and Engineering Mathematics jetzt bestellen!

Weitere Infos & Material


1;Preface;6
2;Contents;8
3;About the Editors;14
4;Fuzzy, Optical and Opto Electronics Control of Oscillations;16
5;Studies of Optical Properties of RF Magnetron Sputtered Deposited Zinc Oxide Films;17
5.1;1 Introduction;17
5.2;2 Experiment and Results;17
5.3;3 Conclusion;20
5.4;References;21
6;Effect of Transmission Delay in a Modified Hybrid Long Loop Phase Lock Loop;22
6.1;1 Introduction;22
6.2;2 Theoretical Analysis;23
6.3;3 Results and Discussions;24
6.4;4 Conclusion;26
6.5;References;27
7;Comparative Study of Single Loop OEO Using Static and Dynamic Band Pass Filter;28
7.1;1 Introduction;28
7.2;2 System Equation of OEO;30
7.3;3 Experimental Results and Discussion;32
7.4;4 Conclusion;36
7.5;References;37
8;A Study on the Effect of an External Periodic Signal in a Chaotic Optoelectronic Oscillator;39
8.1;1 Introduction;39
8.2;2 Derivation of System Equation;40
8.3;3 Numerical Analysis;43
8.4;4 Simulation Study Using MATLAB Simulink Software;44
8.5;5 Conclusion;46
8.6;References;47
9;Computation of Current Density in Double Well Resonant Tunneling Diode Using Self-consistency Technique;49
9.1;1 Introduction;49
9.2;2 Mathematical Modeling;50
9.3;3 Results and Discussions;51
9.4;4 Conclusion;55
9.5;References;56
10;Computation of Electrical Parameters for Single-Gate High-K Nanoscale MOSFET with Cylindrical Geometry;58
10.1;1 Introduction;58
10.2;2 Mathematical Modeling;59
10.3;3 Results and Discussions;60
10.4;4 Conclusion;61
10.5;References;64
11;Power System;65
12;Fault Diagnosis in Isolated Renewable Energy Conversion System Using Skewness and Kurtosis Assessment;66
12.1;1 Introduction;66
12.2;2 Wind Energy Conversion System Under Analysis;67
12.3;3 Theoretical Backgrounds;67
12.4;4 Determination of MRA of DWT Coefficients at Normal and Fault;69
12.5;5 Determination of Skewness and Kurtosis Values at Normal and Fault;70
12.6;6 Feature Extraction;75
12.7;7 Conclusion;75
12.8;References;80
13;FFT Based Harmonic Assessment of Line to Ground Fault in 14 Bus Microgrid System;81
13.1;1 Introduction;81
13.2;2 Microgrid Modelling;82
13.3;3 Fault Simulation;82
13.4;4 Harmonic Assessment and Results;83
13.5;5 Observation;83
13.6;6 Rule Set;91
13.7;7 Specific Outcome;92
13.8;8 Conclusion;92
13.9;References;93
14;Harmonics Assessment Based Symmetrical Fault Diagnosis in PV Array Based Microgrid System;95
14.1;1 Introduction;95
14.2;2 Modeling of 400 KW PV Array Based Micro Grid;97
14.3;3 FFT Based Harmonics Assessments of Line Current;98
14.3.1;3.1 Normal Condition;98
14.3.2;3.2 Fault Condition (LLL);98
14.3.3;3.3 Fault Condition (LLLG);98
14.4;4 Comparative Study;99
14.5;5 Outcome;100
14.6;6 Conclusion;101
14.7;References;106
15;Optimal Design of KVAr Based SVC for Improvement of Stability in Electrical Power System;108
15.1;1 Introduction;108
15.2;2 Theory;110
15.2.1;2.1 Use of SVC in Transmission Line;110
15.2.2;2.2 Traditional Operation of SVC;112
15.3;3 Proposed Methodology of SVC;113
15.4;4 Development of Relation Between KVAr and SHUNT Compensation by Simulation;113
15.5;5 Development of MATLAB Model;116
15.6;6 Description of the Blocks (with Svc and with Out Svc);116
15.6.1;6.1 Parameters;116
15.6.2;6.2 Power Tab;117
15.6.3;6.3 Nominal Voltage and Frequency;117
15.6.4;6.4 Three-Phase Base Power;117
15.6.5;6.5 Reactive Power Limits;118
15.6.6;6.6 Susceptance Brief;119
15.6.7;6.7 Reference;119
15.6.8;6.8 Simulation and Case Study;120
15.6.9;6.9 Case Study;120
15.7;7 Conclusion;121
15.8;References;123
16;An Improved Reactive Power Compensation Scheme for Unbalanced Four Wire System with Low Harmonic Injection Using SVC;125
16.1;1 Introduction;125
16.2;2 Proposed Compensation Model Using Symmetrical Component Approach;126
16.2.1;2.1 Control Scheme;129
16.3;3 Proposed GSA Based Harmonic Minimization;130
16.4;4 Simulation Results;132
16.4.1;4.1 Dynamic Response of the System Without and with Proposed Compensator;133
16.4.2;4.2 Dynamic Response of the System Under Sudden Load Change;135
16.5;5 Conclusion;135
16.6;References;136
17;A Comprehensive Review on Distribution System;138
17.1;1 Introduction;138
17.2;2 Distribution Network Reconfiguration;139
17.2.1;2.1 Introduction to Distribution System Reconfiguration;139
17.2.2;2.2 A Review on Distribution System Reconfiguration;139
17.3;3 Load Flow Studies on Distribution System;141
17.3.1;3.1 Load Flow Approach in DS Due to a Different Topology;141
17.3.2;3.2 A Review on Load Flow Methods on Distribution Systems;141
17.4;4 Impact of Renewable Energy on Distribution System;142
17.4.1;4.1 Renewable Energy—An Alternative for a Clean and Reliable Distribution System;142
17.4.2;4.2 A Review on Renewable Energy Based Distribution Systems;143
17.5;5 Effect of Demand Response on Distribution System;144
17.5.1;5.1 Demand Response and Its Objective;144
17.5.2;5.2 A Review on Performance of Distribution System with Demand Response;144
17.6;6 Conclusion;145
17.7;References;145
18;Solution of Multi-objective Combined Economic Emission Load Dispatch Using Krill Herd Algorithm with Constraints;149
18.1;1 Introduction;150
18.2;2 Overview of Economic Emission Load Dispatch Problems;151
18.3;3 Overview of Krill Herd Algorithm and Teaching Learning Based Optimization Algorithm;152
18.4;4 Implementation of KH Algorithm to Economic-Emission Load Dispatch Problem;154
18.5;5 Simulation Results with Discussions;155
18.6;6 Conclusion;157
18.7;References;159
19;Classification of Crossover Faults and Determining Their Location in a Double Circuit Power Transmission System with Multiple Sources;160
19.1;1 Introduction;160
19.2;2 Simulation of Faults and the System Under Study;161
19.3;3 Discrete S-Transform (DST);162
19.4;4 Feature Extraction from the S-Matrix and Regression;163
19.4.1;4.1 Polynomial Regression;165
19.5;5 Fault Classification and Determination of Fault Location;165
19.5.1;5.1 Fault Classification;167
19.5.2;5.2 Determination of Fault Location;167
19.5.3;5.3 Implementation of Noisy Signals;169
19.6;6 Conclusion;169
19.7;References;171
20;Optimal Value of Excitation of Self-excited Induction Generators by Simulated Annealing;173
20.1;1 Introduction;173
20.2;2 Excitation of Self-excited Induction Generator (SEIG);174
20.3;3 Simulated Annealing;175
20.4;4 Variables;175
20.5;5 Objective Function;175
20.6;6 Case Study;178
20.7;7 Conclusion;178
20.8;Appendix: Constants of Objective Function for 4 kW Machine;180
20.9;References;180
21;Different Setting of Unified Power Flow Controller (UPFC) and Its Effect on Performance of Distance Relay;181
21.1;1 Introduction;181
21.2;2 Proposed Model;182
21.2.1;2.1 Model of Transmission Line with UPFC;182
21.2.2;2.2 STATCOM and SSSC Model Using 48-Pulse VSC;183
21.2.3;2.3 Apparent Impedance Calculation for Distance Relay;184
21.2.4;2.4 Relay Model;187
21.3;3 Result Analysis;187
21.3.1;3.1 Statcom Results;188
21.3.2;3.2 SSSC Results;189
21.3.3;3.3 UPFC Results;190
21.4;4 Conclusion;191
21.5;References;192
22;Assessment of Discrimination Between Fault and Inrush Condition of Power Transformer by Radar Analysis and Wavelet Transform Based Kurtosis and Skewness Analysis;193
22.1;1 Introduction;193
22.2;2 Model for Simulation of Inrush and Fault Current of Power Transformer;195
22.3;3 Wavelet Transform (WT) Analysis;195
22.4;4 Assessment of Inrush, Normal and Fault with Inrush Condition of Power Transformer;197
22.4.1;4.1 Results and Observation of Continuous Wavelet Transform (CWT);197
22.4.2;4.2 Discrete Wavelet Transform (DWT);198
22.4.3;4.3 Radar Analysis;201
22.5;5 Algorithm of Assessment of Different Conditions of Power Transformer;203
22.6;6 Specific Outcome;203
22.7;7 Conclusion;204
22.8;References;204
23;SCADA Based Real Time Reactive Power Compensation Scheme for Assessment and Improvement of Voltage Stability in Power System;206
23.1;1 Introduction;206
23.2;2 Concept of Proposed Methodology;207
23.3;3 Simulation;209
23.4;4 Closed Loop Feedback Algorithm;211
23.5;5 Conclusion;211
23.6;References;212
24;Energy;213
25;Solar Photovoltaic Power Supply to Utility Grid and Its Synchronization;214
25.1;1 Introduction;214
25.2;2 DC-DC Converter;215
25.2.1;2.1 Boost Converter;216
25.2.2;2.2 Full Bridge High Frequency Converter;220
25.3;3 Grid Connected Inverter with Filter;221
25.4;4 Control Technique of GTI Switching Devices;221
25.4.1;4.1 Subtractor;221
25.4.2;4.2 Comparator;222
25.4.3;4.3 Demultiplexer;222
25.5;5 Latest Trends and Scope of Future Developments;223
25.6;6 Conclusion;223
25.7;References;223
26;Optimum Sizing and Economic Analysis of Renewable Energy System Integration into a Micro-Grid for an Academic Institution—A Case Study;225
26.1;1 Introduction;225
26.2;2 System Description;226
26.2.1;2.1 Solar Radiation Data;228
26.2.2;2.2 Wind Resource;228
26.2.3;2.3 Electrical Load Analysis;230
26.3;3 HOMER Simulation Model;230
26.4;4 Results and Discussion;231
26.5;5 Conclusion;233
26.6;References;235
27;Modelling and Simulation of Solar Cell Under Variable Irradiance and Load Demand;237
27.1;1 Introduction;237
27.2;2 Photovoltaic System;238
27.2.1;2.1 Single Diode Model;238
27.2.2;2.2 Solar Cell Module and Array Model;241
27.2.3;2.3 Characteristic Curves of Solar Cell;244
27.2.4;2.4 Effect of Ambient Irradiance and Temperature;244
27.3;3 Results;245
27.3.1;3.1 Analysis with Various Irradiance and Load Demand Values;246
27.4;4 Conclusion;250
27.5;References;251
28;Power Management of Non-conventional Energy Sources Connected to Local Grid;252
28.1;1 Introduction;252
28.2;2 Simple Block Diagram;252
28.3;3 Interconnected Overall Simulink Model;253
28.3.1;3.1 Induction Machine Model;253
28.3.2;3.2 Turbine Model;256
28.3.3;3.3 Solar Panel Model;256
28.3.4;3.4 Boost Converter Model;258
28.3.5;3.5 Three Phase Inverter Model;259
28.3.6;3.6 Voltage Grid and Load Model;259
28.4;4 Operation Results of Model;260
28.4.1;4.1 Operation of Model Without Active Power Control;260
28.4.2;4.2 Operation of Model with Active Power Control;261
28.5;5 Conclusion;263
28.6;References;264
29;Smart Coordination Approach for Power Management with PEV Based on Real Time Pricing;265
29.1;1 Introduction;265
29.2;2 Theory;267
29.2.1;2.1 Electric Vehicles and Distribution Networks;267
29.2.2;2.2 State Space Modeling of Power Network Including PEVs;268
29.3;3 Problem Statement;268
29.4;4 Simulation and Result;269
29.4.1;4.1 Clustering of LDCs Through Price Depending Zone-Clustering Algorithm;270
29.4.2;4.2 Preparation of Generation-Demand Schedule with PEV Charging-Discharging Plan;271
29.4.3;4.3 Demand Response of the Power Market with PEV Charging and Discharging Schedule;272
29.4.4;4.4 Cost Evaluation to Estimate the Economical Benefits of Power Consumer;272
29.4.5;4.5 Applicability of Proposed Algorithm to Maintain Standard Operational Constraints;274
29.5;5 Conclusion;274
29.6;References;275
30;Fault Analysis in Grid Connected Solar Photovoltaic System;278
30.1;1 Introduction;278
30.2;2 System Description;280
30.3;3 Mathematical Techniques Used for Fault Analysis;280
30.3.1;3.1 Total Harmonic Distortion (THD);280
30.3.2;3.2 Inter-harmonics Group Analysis;281
30.3.3;3.3 Discrete Wavelet Transform (DWT) Analysis;281
30.3.4;3.4 Skewness;282
30.3.5;3.5 Kurtosis;282
30.4;4 Results of Fault Analysis Using Different Techniques;282
30.5;5 Observations;283
30.6;6 Algorithm of Assessment of Different Conditions of Grid Connected Solar PV System;285
30.7;7 Specific Outcome;286
30.8;8 Conclusion;286
30.9;References;286
31;Sub-harmonics Based String Fault Assessment in Solar PV Arrays;288
31.1;1 Introduction;288
31.2;2 Data Acquisition;289
31.3;3 Fault Simulation;290
31.4;4 Sub-harmonics Feature Extraction;291
31.5;5 Curve Selection and Linier Approximation;293
31.6;6 Algorithm and Validation;294
31.6.1;6.1 Algorithm;294
31.6.2;6.2 Validation;294
31.6.3;6.3 Discussion;295
31.7;7 Conclusion;295
31.8;References;295
32;Control Techniques;297
33;Design of Bacterial Foraging Optimization Algorithm Based Adaptive Sliding Mode Controller for Inverted Pendulum;298
33.1;1 Introduction;298
33.2;2 The Principle of Bacterial Foraging Optimization Algorithm;299
33.2.1;2.1 Chemotaxis Operation;299
33.2.2;2.2 Reproduction;300
33.2.3;2.3 Elimination and Dispersal Operation;300
33.3;3 The Fundamental Principle of Adaptive Sliding Mode Controller;300
33.4;4 Design of Adaptive Sliding Mode Controller Based on BFOA;301
33.4.1;4.1 Design of BFOA Encoding;301
33.4.2;4.2 Design of Fitness Function;303
33.4.3;4.3 Flow Chart of BFOA Encoding;303
33.5;5 Experimental Simulation and Results Analysis;303
33.6;6 Comparison of Different Controller Performances;305
33.7;7 Conclusion;305
33.8;References;306
34;Design of Sliding Mode Excitation Controller to Improve Transient Stability of a Power System;308
34.1;1 Introduction;308
34.2;2 Design of Nonlinear Excitation Controller Based on STSMC;310
34.2.1;2.1 Affine Model of an SMIB System;310
34.2.2;2.2 Estimation of Relative Degree of the Test System;311
34.2.3;2.3 Estimation of Control Law by Super Twisting Sliding Mode Control (STSMC);312
34.3;3 Zero Dynamic Design of Excitation Controller;314
34.4;4 Performance Analysis;316
34.5;5 Conclusion;318
34.6;Appendix;319
34.7;References;319
35;Modelling of an Optimum Fuzzy Logic Controller Using Genetic Algorithm;320
35.1;1 Introduction;320
35.2;2 Fuzzy Logic Controller (FLC);321
35.3;3 Takagi-Sugeno Type Fuzzy Logic Controller;321
35.4;4 Genetic Algorithm;322
35.5;5 Modelling of Liquid Level System;323
35.6;6 Fuzzy Logic Controller Design;325
35.7;7 Simulation and Results;327
35.8;8 Conclusion;329
35.9;References;330
36;Evolutionary Smith Predictor for Control of Time-Delay Systems;331
36.1;1 Introduction;331
36.2;2 System Identification and Mathematical Model;332
36.2.1;2.1 An Introduction of Smith Predictor Scheme for Processes with Dead Time;334
36.3;3 Ant Colony Optimization Technique;334
36.4;4 Particle Swarm Optimization Technique;335
36.5;5 Harmony Search Algorithm;336
36.6;6 Grey Wolf Optimization;337
36.7;7 Results and Discussions;338
36.8;8 Conclusion;339
36.9;References;340
37;On-line Adaptation of Parameter Uncertainties of a Practical Plant Employing L1 Adaptive Controller;342
37.1;1 Introduction;342
37.2;2 Problem Formulation;343
37.2.1;2.1 L1 Adaptive Controller Architecture;343
37.3;3 L1 Adaptive Controller Implementation in Online Mode;346
37.3.1;3.1 Inclusion of Parameter Uncertainties;346
37.3.2;3.2 Online L1 Adaptive Controller;350
37.4;4 Experimental Results;352
37.4.1;4.1 Real Time Case Study;352
37.5;5 Conclusion;353
37.6;References;354
38;Two-Degree-of-Freedom Control of Non-minimum Phase Mechanical System;356
38.1;1 Introduction;356
38.2;2 Two-Degree-of-Freedom;358
38.3;3 Model Reference Adaptive Control;359
38.3.1;3.1 Design of 2DOF Controller Using Model Reference Adaptive Control;359
38.4;4 Description of State Feedback Controller;361
38.5;5 Description of Proportional Plus Integral Plus Derivative (PID) Control;362
38.6;6 Problem Formulation;363
38.7;7 Mechanical System Model;363
38.8;8 Simulation Result;364
38.9;9 Result Analysis;364
38.10;10 Conclusion;367
38.11;References;368
39;LFT Modeling of Differentially Driven Wheeled Mobile Robot;370
39.1;1 Introduction;370
39.2;2 Differentially Driven Wheeled Mobile Robot;372
39.2.1;2.1 Kinematic Modeling;373
39.2.2;2.2 Dynamic Modelling;374
39.3;3 LFT Modelling of Differentially Driven Wheeled Mobile Robot;375
39.4;4 Frequency Domain Validation;380
39.4.1;4.1 Simulation Result;380
39.5;5 Conclusions;382
39.6;References;383
40;Neuro Fuzzy, Control System and Optimization;385
41;Automatic Electronic Excitation Control in a Modern Alternator;386
41.1;1 Introduction;386
41.2;2 Mathematical Description;387
41.3;3 Evolution of the Exciter System;388
41.4;4 Modern Alternators and Their Excitation;388
41.5;5 Change of Excitation with Change in Load;389
41.6;6 Requirements of the Excitation System;390
41.7;7 Types of Exciter;391
41.8;8 Change of Excitation with Load and Its P.F;391
41.9;9 Induced Voltage at Different Loads and P.F;392
41.10;10 Automatic Excitation Control;392
41.11;11 Conclusion;394
41.12;References;394
42;Analysis of Linear Time Invariant and Time Varying Dynamic Systems via Taylor Series Using a New Recursive Algorithm;396
42.1;1 Introduction;396
42.2;2 Function Approximation via Taylor Series;397
42.2.1;2.1 First Order Taylor Approximation [2];397
42.2.2;2.2 Second Order Taylor Approximation;397
42.3;3 Analysis of the State via Taylor Approximation;398
42.3.1;3.1 Linear Time Invariant (LTI) System;398
42.3.2;3.2 Linear Time Varying System;400
42.4;4 Numerical Example;402
42.5;5 Error Estimates;406
42.6;6 Conclusion;409
42.7;References;409
43;Severity and Location Detection of Three Phase Induction Motor Stator Fault Using Sample Shifting Technique and Adaptive Neuro Fuzzy Inference System;411
43.1;1 Introduction;411
43.2;2 Materials and Methods;412
43.2.1;2.1 Sequence Component Evaluation Using SST;412
43.2.2;2.2 Formulation of Fault Detection Methodologies;414
43.2.3;2.3 Adaptive Neuro Fuzzy Inference System (ANFIS) for Fault Diagnosis;415
43.2.4;2.4 Preparation of Suitable Training Data Set for ANFIS;415
43.3;3 MATLAB Simulation;416
43.3.1;3.1 Simulink Model of Three Phase Induction Motor;416
43.3.2;3.2 Simulation Result;419
43.4;4 Experimental Verification;421
43.5;5 Conclusion;423
43.6;References;424
44;Level Adjustment of Hydrofoil Sea-Craft Under Wave Disturbance;426
44.1;1 Introduction;426
44.2;2 Operation of Hydrofoil Ships;427
44.3;3 The Control System;427
44.4;4 The Control System Design;428
44.5;5 Specification;428
44.6;6 The Mathematical Description;428
44.7;7 Conclusion;431
44.8;References;432
45;Computation Technique;433
46;Law of Time and Mathematical Axioms;434
46.1;1 Introduction;434
46.2;2 Law of Movement;435
46.3;3 Explanation:;436
46.3.1;3.1 Law of Opposition;436
46.3.2;3.2 Law of Energy;436
46.3.3;3.3 Law of Universal;437
46.3.4;3.4 Law of 05 Tense;437
46.3.5;3.5 Law of Infinite;438
46.3.6;3.6 Law of Particle;439
46.3.7;3.7 Law of Uncertainty;439
46.3.8;3.8 Law of Life Time;440
46.3.9;3.9 Law of Quality;440
46.4;4 Discussion;441
46.5;References;442
47;Analysis of Resources for the Safety and Comfort of Railway Passenger Using Analytical Hierarchy Process;444
47.1;1 Introduction;444
47.2;2 Function of Operating Department;446
47.2.1;2.1 Planning of Transport Services;446
47.2.2;2.2 Running of Trains;447
47.2.3;2.3 Safety and Comfort;448
47.2.4;2.4 Railway Accident and Human Elements Involved;448
47.2.5;2.5 Transport Economy and Efficiency;449
47.3;3 Modernization;449
47.3.1;3.1 Anti Collision Device;450
47.3.2;3.2 Failure Indication and Brake Application Device;450
47.3.3;3.3 Wheel Slide Protection;450
47.4;4 Tools of Analysis;451
47.4.1;4.1 Analytical Hierarchy Process;451
47.4.2;4.2 Steps of Analytical Hierarchy Process;451
47.5;5 Objective of the Study;452
47.6;6 Plan of Work;454
47.7;7 Conclusion;455
47.8;References;456
48;Electrocardiogram Signal Analysis for Diagnosis of Congestive Heart Failure;457
48.1;1 Introduction;457
48.2;2 DATA Collection;458
48.3;3 Radar Comparison of ECG Signals;459
48.4;4 Discrete Wavelet Transformation of ECG Signals;460
48.5;5 Comparison of Radar of SA;461
48.6;6 Histogram Assessment of SA;461
48.7;7 Conclusion;462
48.8;References;463
49;Condition Assessment of Structure Through Non Destructive Testing—A Case Study on Two Identical Buildings of Different Age;465
49.1;1 Introduction;465
49.1.1;1.1 Conditional Assessment;465
49.1.2;1.2 Non Destructive Testing on Concrete;466
49.2;2 Experimental Work;466
49.2.1;2.1 Visual Inspection;466
49.2.2;2.2 Specifications of the Instruments Used;467
49.2.3;2.3 Setting Out for the Tests;468
49.3;3 Results;470
49.4;4 Discussion;474
49.5;5 Conclusion;475
49.6;6 Further Scope of Work;476
49.7;References;477
50;A Real Time Health Monitoring and Human Tracking System Using Arduino;478
50.1;1 Introduction;478
50.2;2 System Description;479
50.3;3 Flow Chart Description;479
50.3.1;3.1 Transmitter Section;480
50.3.2;3.2 Receiver Section;480
50.4;4 Result;481
50.5;5 Conclusion;482
50.6;References;483
51;Study of Arrhythmia Using Wavelet Transformation Based Statistical Parameter Computation of Electrocardiogram Signal;484
51.1;1 Introduction;484
51.2;2 Data Collection;485
51.3;3 Wavelet Decomposition;485
51.4;4 Observation;485
51.5;5 Conclusion;487
51.6;References;487
52;Modelling and Simulation in General Application;489
53;Analysis of Retinal OCT Images for the Early Diagnosis of Alzheimer’s Disease;490
53.1;1 Introduction;490
53.2;2 Segmentation Using Wavelet Network;492
53.3;3 Feature Extraction;496
53.4;4 Classification of OCT Images;496
53.5;5 Experimental Results;497
53.6;6 Conclusion;498
53.7;References;499
54;Real Time Diagnosis of Rural Cardiac Patients Through Telemedicine;502
54.1;1 Introduction;502
54.2;2 System Description;503
54.3;3 ECG Acquisition System;504
54.4;4 Wireless Transmission;505
54.5;5 Reception and Display of the ECG Signal;505
54.6;6 Ecg Display on Laptop Using Labview;505
54.7;7 Ecg Display on Local Server;505
54.8;8 ECG Display on Internet;506
54.9;9 Results;507
54.10;10 Conclusion;508
54.11;References;509
55;A Comparative Analysis of a Healthy Retina and Retina of a Stroke Patient;511
55.1;1 Introduction;511
55.2;2 Literature Survey;512
55.3;3 Methodology;512
55.3.1;3.1 Preprocessing;512
55.3.2;3.2 Morphological Operations;514
55.3.3;3.3 Skeletonization;514
55.4;4 Result and Discussion;514
55.5;5 Conclusion;516
55.6;References;517
56;Square Root Quadrature Information Filters for Multiple Sensor Fusion;519
56.1;1 Introduction;519
56.2;2 Problem Statement;520
56.3;3 Square Root Quadrature Information Filters;520
56.3.1;3.1 General Algorithm;521
56.3.2;3.2 Choice of Quadrature Points;522
56.3.3;3.3 Multiple Sensor Fusion;523
56.3.4;3.4 Notes on the Algorithm;524
56.4;4 Case Study Using Aircraft Tracking Problem;524
56.5;5 Conclusion;525
56.6;References;526
57;Cost Effective, Water Controlled Automated Gardening System;528
57.1;1 Introduction;528
57.2;2 Design Algorithm;529
57.3;3 System Block Diagram and Working;529
57.3.1;3.1 Moisture Sensors;530
57.3.2;3.2 Arduino Uno;530
57.3.3;3.3 Amplifier;531
57.3.4;3.4 Solid State Relay;531
57.3.5;3.5 Submersible Pump;531
57.4;4 Results;531
57.5;5 Benefits that This System Provides;532
57.6;6 Conclusion;532
57.7;7 Future Scope of Work;532
57.8;References;533
58;Ear Based Biometric Analysis for Human Identification;534
58.1;1 Introduction;534
58.2;2 Methodology;536
58.2.1;2.1 Image Processing;537
58.2.2;2.2 Feature Extraction;537
58.2.3;2.3 Estimation of Occlusion Point;538
58.2.4;2.4 Signature Matrix Generation;540
58.3;3 Result and Discussion;542
58.4;4 Conclusion;544
58.5;References;544
59;An Integrated Model for Early Detection and Monitoring of Diabetic Foot;546
59.1;1 Introduction;546
59.2;2 Diabetic Foot Infection;547
59.3;3 Key Indicators of Diabetic Foot;547
59.4;4 Hemodynamic Model of Blood Flow;547
59.5;5 Detection Techniques;548
59.5.1;5.1 Ultrasonic Measurement Techniques;549
59.5.2;5.2 Transcutaneous Oxygen Measurements;550
59.5.3;5.3 Photo Plethysmography;550
59.6;6 Conclusion;551
59.7;References;552
60;Real Time Periodic Assessment of Retina of Diabetic Patients for Early Detection of Diabetic Retinopathy;553
60.1;1 Introduction;553
60.2;2 Proposed Method;555
60.3;3 Conclusion;559
60.4;References;560
61;Product Recommendation for E-Commerce Data Using Association Rule and Apriori Algorithm;562
61.1;1 Introduction;562
61.2;2 Recommender System;563
61.3;3 Proposed Approach;564
61.3.1;3.1 Work Flow Diagram of Proposed Recommender System;564
61.4;4 Association Rule;565
61.4.1;4.1 Meaning and Uses;565
61.4.2;4.2 Mining Association Rule;565
61.5;5 Apriori Algorithm for Product Recommendation;566
61.6;6 Experimental Evaluation;566
61.7;7 Result and Conclusion;569
61.8;References;569
62;A Comparative Analysis Between EDR and Respiration Signal: A Pilot Study with Normal Subjects;571
62.1;1 Introduction;571
62.2;2 Method;572
62.2.1;2.1 Data Collection;572
62.2.2;2.2 Pre-processing of ECG and Respiration Signal;573
62.2.3;2.3 ECG Derived Respiration;574
62.2.4;2.4 Feature Extraction;575
62.3;3 Result;576
62.4;4 Discussion;578
62.5;5 Conclusion;579
62.6;References;579
63;Uncertainty in Fission Product Transient Release Under Accident Condition;581
63.1;1 Introduction;581
63.2;2 Theoretical Model for Uncertainty Quantification;582
63.2.1;2.1 Analytical Uncertainty Estimation Methodology;582
63.2.2;2.2 Transient Fission Product Release Model;583
63.2.3;2.3 Error Propagation in Transient Fission Product Release Model;584
63.3;3 Results and Discussion;585
63.4;4 Conclusion;588
63.5;References;589
64;Statistical Aggregation of Extreme Value Analysis Models;590
64.1;1 Introduction;590
64.2;2 Theoretical Methodology;591
64.2.1;2.1 Generalized Extreme Value Analysis Model;591
64.2.2;2.2 Probabilistic Methodology for Estimate the Model Uncertainty;593
64.2.3;2.3 Statistical Aggregation Methodology;593
64.3;3 Results and Discussions;594
64.4;4 Conclusion;596
64.5;References;596
65;Electroosmotic Effects on Rough Wall Micro-channel Flow;598
65.1;1 Introduction;598
65.2;2 Numerical Procedure;600
65.3;3 Results and Discussions;601
65.4;4 Conclusion;604
65.5;References;605
66;Comparative Study on Fuzzy Based Linearization Technique Between MATLAB and LABVIEW Platform;606
66.1;1 Introduction;606
66.2;2 Fuzzy Based Linearization in MATLAB;607
66.3;3 Fuzzy Based Linearization in LABVIEW;609
66.4;4 Conclusion;612
66.5;References;613
67;Automated Identification of Myocardial Infarction Using a Single Vectorcardiographic Feature;615
67.1;1 Introduction;615
67.2;2 Methodology;617
67.2.1;2.1 Data Pre-processing;618
67.2.2;2.2 Beat Extraction;618
67.2.3;2.3 Beat Segmentation;619
67.2.4;2.4 Drawing of VCG Loops;619
67.2.5;2.5 Computation of Volume Ratio;620
67.3;3 Experimental Results;621
67.3.1;3.1 Used Data;621
67.3.2;3.2 Performance Evaluation Parameters;621
67.3.3;3.3 Performance Evaluation;622
67.4;4 Conclusion and Discussion;623
67.5;References;624
68;Content Extraction Studies for Multilingual Unstructured Web Documents;626
68.1;1 Introduction;626
68.2;2 Content Extraction Techniques;628
68.3;3 Nature and Features in Web Documents;629
68.4;4 Text and Character Issues;631
68.5;5 Development of Pixel Map Attributes;631
68.6;6 Content Extraction—Results and Discussion;634
68.7;7 Conclusion;636
68.8;References;636
69;Potentiality of Retina for Disease Diagnosis Through Retinal Image Processing Techniques;638
69.1;1 Introduction;638
69.2;2 Retina Based Eye Diseases and Its Detection;639
69.3;3 Early Detection of Stroke Through Retinal Image Analysis;645
69.4;4 Early Detection of Alzheimer’s Disease Through Retinal Image Processing;647
69.5;5 Conclusions;647
69.6;References;648
70;Generalized LFT Modeling of an Uncertain MIMO System;650
70.1;1 Introduction;650
70.2;2 Generalized LFT Modeling of Linear MIMO System;652
70.2.1;2.1 Problem Formulation;652
70.2.2;2.2 LFT Modeling Algorithm for Multiplicative Uncertainty Structure;653
70.3;3 LFT Modeling of Two-DOF Mass-Spring-Dashpot Dynamic System;659
70.4;4 H? Control Based Frequency Domain Validation;664
70.4.1;4.1 Simulation Results;664
70.5;5 Conclusions;665
70.6;References;666



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.