Chawla / Khattar | Data Lake Analytics on Microsoft Azure | E-Book | sack.de
E-Book

E-Book, Englisch, 222 Seiten, eBook

Chawla / Khattar Data Lake Analytics on Microsoft Azure

A Practitioner's Guide to Big Data Engineering
1. Auflage 2020
ISBN: 978-1-4842-6252-8
Verlag: APRESS
Format: PDF
Kopierschutz: 1 - PDF Watermark

A Practitioner's Guide to Big Data Engineering

E-Book, Englisch, 222 Seiten, eBook

ISBN: 978-1-4842-6252-8
Verlag: APRESS
Format: PDF
Kopierschutz: 1 - PDF Watermark



Get a 360-degree view of how the journey of data analytics solutions has evolved from monolithic data stores and enterprise data warehouses to data lakes and modern data warehouses. You will This book includes comprehensive coverage of how: To architect data lake analytics solutions by choosing suitable technologies available on Microsoft AzureThe advent of microservices applications covering ecommerce or modern solutions built on IoT and how real-time streaming data has completely disrupted this ecosystemThese data analytics solutions have been transformed from solely understanding the trends from historical data to building predictions by infusing machine learning technologies into the solutions Data platform professionals who have been working on relational data stores, non-relational data stores, and big data technologies will find the content in this book useful. The book also can help you start your journey into the data engineer world as it provides an overview of advanced data analytics and touches on data science concepts and various artificial intelligence and machine learning technologies available on Microsoft Azure. What Will You Learn You will understand the: Concepts of data lake analytics, the modern data warehouse, and advanced data analyticsArchitecture patterns of the modern data warehouse and advanced data analytics solutions Phases—such as Data Ingestion, Store, Prep and Train, and Model and Serve—of data analytics solutions and technology choices available on Azure under each phase In-depth coverage of real-time and batch mode data analytics solutions architecture Various managed services available on Azure such as Synapse analytics, event hubs, Stream analytics, CosmosDB, and managed Hadoop services such as Databricks and HDInsightWho This Book Is For Data platform professionals, database architects, engineers, and solution architects
Chawla / Khattar Data Lake Analytics on Microsoft Azure jetzt bestellen!

Zielgruppe


Professional/practitioner

Weitere Infos & Material


Chapter 1: Data Lake Analytics Concepts.- Chapter 2: Building Blocks of Data Analytics.- Chapter 3: Data Analytics on Public Cloud.- Chapter 4: Data Ingestion.- Chapter 5: Data Storage.- Chapter 6: Data Preparation and Training Part I.- Chapter 7: Data Preparation and Training Part II.- Chapter 8: Model and Serve.- Chapter 9: Summary.


Harsh Chawla  has been working on data platform technologies for last 14 years. He has been in various roles in the Microsoft world for last 12 years, going from CSS to services to technology strategy. He currently works as an Azure specialist with data and AI technologies and helps large IT enterprises build modern data warehouses, advanced analytics, and AI solutions on Microsoft Azure. He has been a community speaker and blogger on data platform technologies.  Pankaj Khattar  is a seasoned Software Architect with over 14 years of experience in design and development of Big Data, Machine Learning and AI based products. He currently works with Microsoft on the Azure platform as a Sr. Cloud Solution Architect for Data & AI technologies. He also possesses extensive industry experience in the field of building scalable multi-tier distributed applications and client/server based development. You can connect with him on LinkedIn at https://www.linkedin.com/in/pankaj-khattar/



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.