Chelliah / Sakthivel / Nagarajan | Applied Learning Algorithms for Intelligent IoT | Buch | 978-0-367-63594-7 | sack.de

Buch, Englisch, 368 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 719 g

Chelliah / Sakthivel / Nagarajan

Applied Learning Algorithms for Intelligent IoT


1. Auflage 2021
ISBN: 978-0-367-63594-7
Verlag: Auerbach Publications

Buch, Englisch, 368 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 719 g

ISBN: 978-0-367-63594-7
Verlag: Auerbach Publications


This book vividly illustrates all the promising and potential machine learning (ML) and deep learning (DL) algorithms through a host of real-world and real-time business use cases. Machines and devices can be empowered to self-learn and exhibit intelligent behavior. Also, Big Data combined with real-time and runtime data can lead to personalized, prognostic, predictive, and prescriptive insights. This book examines the following topics:

- Cognitive machines and devices

- Cyber physical systems (CPS)

- The Internet of Things (IoT) and industrial use cases

- Industry 4.0 for smarter manufacturing

- Predictive and prescriptive insights for smarter systems

- Machine vision and intelligence

- Natural interfaces

- K-means clustering algorithm

- Support vector machine (SVM) algorithm

- A priori algorithms

- Linear and logistic regression

Applied Learning Algorithms for Intelligent IoT clearly articulates ML and DL algorithms that can be used to unearth predictive and prescriptive insights out of Big Data. Transforming raw data into information and relevant knowledge is gaining prominence with the availability of data processing and mining, analytics algorithms, platforms, frameworks, and other accelerators discussed in the book. Now, with the emergence of machine learning algorithms, the field of data analytics is bound to reach new heights.

This book will serve as a comprehensive guide for AI researchers, faculty members, and IT professionals. Every chapter will discuss one ML algorithm, its origin, challenges, and benefits, as well as a sample industry use case for explaining the algorithm in detail. The book’s detailed and deeper dive into ML and DL algorithms using a practical use case can foster innovative research.

Chelliah / Sakthivel / Nagarajan Applied Learning Algorithms for Intelligent IoT jetzt bestellen!

Zielgruppe


Academic and Postgraduate

Weitere Infos & Material


1. Convolutional Neural Network in Computer Vision. 2. Trends and Transition in the Machine Learning (ML) Space. 3. Deep Learning: Algorithms, Platforms, Applications, and Research Trends in IoT. 4. The Next-Generation IoT Use Cases across Industry Verticals using Machine and Deep Learning Algorithms. 5. A Panoramic View of Cyber Attack Detection and Prevention Using Machine Learning and Deep Learning Approaches. 6. Regression Algorithms in Machine Learning. 7. Machine Learning Based Industrial Internet of Things (IIoT) and Its Applications. 8. Employee Turnover Prediction Using Single Voting Model. 9. A Novel Implementation of Sentiment Analysis towards Data Science. 10. Conspectus of K-Means Clustering Algorithm. 11. Systematic Approach to Deal with Internal Fragmentation and Enhancing Memory Space during COVID-19. 12. IoT Automated Spy Drone to Detect and Alert Illegal Drug Plants for Law Enforcement. 13. Expounding K-Means-inspired Network Partitioning Algorithm for SDN Controller Placement. 14. An Intelligent Deep Learning Based Wireless Underground Sensor System for IoT Based Agricultural Application. 15. Predicting Effectiveness of Solar Pond Heat Exchanger with LTES Containing CUO Nanoparticle Using Machine Learning.


Dr. Pethuru Raj is Chief Architect and Vice President of the Site Reliability Engineering (SRE) Division of Reliance JioInfocomm. Ltd., Bangalore, India.

Dr. Usha Sakthivel is the dean of research, Department of Computer Engineering, RajaRajeswari College of Engineering, Bangalore, India.

Dr. Susila N is a professor and head of the Department of Information Technology, Sri Krishna College of Engineering and Technology, Coimbatore, India.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.