Chen / Cao / Nguyen | Databases Theory and Applications | E-Book | sack.de
E-Book

E-Book, Englisch, 532 Seiten

Reihe: Lecture Notes in Computer Science

Chen / Cao / Nguyen Databases Theory and Applications

35th Australasian Database Conference, ADC 2024, Gold Coast, QLD, Australia, and Tokyo, Japan, December 16–18, 2024, Proceedings
Erscheinungsjahr 2024
ISBN: 978-981-961242-0
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark

35th Australasian Database Conference, ADC 2024, Gold Coast, QLD, Australia, and Tokyo, Japan, December 16–18, 2024, Proceedings

E-Book, Englisch, 532 Seiten

Reihe: Lecture Notes in Computer Science

ISBN: 978-981-961242-0
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



This LNCS volume constitutes the referred proceedings of 35th Australasian Database Conference, ADC 2024, held in Gold Coast, QLD, Australia and Tokyo, Japan, during December 16-18, 2024. 

The 38 full papers included in these proceedings were carefully reviewed and selected from 90 submissions. They focus on latest advancements and innovative applications in database systems, data-driven applications, and data analytics. 

Chen / Cao / Nguyen Databases Theory and Applications jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Research Track Papers.- Robustness Analysis on Self Ensemble Models in Time Series Classification.- Queries Optimised LLM Empowered Active Learning for Social Media Analysis of Human Behaviour in Bushfire Evacuations.- An Experimental Comparison of RDF Systems on Cloud.- Hierarchical Spatial Temporal Graph Enhanced Model for Map Matching.- Stability Driven CNN Training with Lyapunov Based Dynamic Learning Rate.- TIformer A Transformer Based Framework for Time Series Forecasting with Missing Data.- Towards Comprehensive Innovation Landscape Technology Retrieval meets Large Language Models.- First Past the Post Evaluating Query Optimization in MongoDB.- High order Recommendation with Heterophilic Hypergraph Diffusion.- Sub Graph Sharing for Faster Betweenness Centrality Computation on Road Networks.- Mining Rare Temporal Pattern in Time Series.- Multi Slot Tag Assignment Problem in Billboard Advertisement.- Meta Learner Based Method for Classifying Skin Cancer Types from Dermoscopic Images Utilizing Deep Learning.- Exploring the Meaningfulness of Nearest Neighbor Search in High Dimensional Space.- Efficient Shortest Path Computation for Electric Vehicles in Time Dependent Networks.- Keyword based Betweenness Centrality Maximization in Attributed Graphs.- Efficient Answering of k Reachability on Temporal Bipartite Graphs.- Correlation between Macro Economic Variables and Financial Sector Australian Share Market Index.- Preference Learning Based on Dynamic Dual Cognition for Group Recommendation.- Distributed Hop Constrained s t Simple Path Enumeration in Labelled Graphs.- Time Efficient Path Planning Algorithm for Mobile Robots on Uneven Terrain.- Mining Irregular Time Series Data with Noisy Labels A Risk Estimation Approach.- CLMM Uncertainty Aware Map Matching for Bluetooth Data through Contrastive Learning.- Tri Modality Collaborative Learning for Person Re Identification.- Graph Neural Patching for Cold Start Recommendations.- GIG Graph Data Imputation with Graph Differential Dependencies.- a Persistent Temporal Clique Enumeration with an Application.- Transferable Attacks for Semantic Segmentation.- Mitigate the Damage of Rumor on Susceptible Group.- Knowledge Assisted Small Object Detection.- Knowledge Extraction of Combat Document via Sequence Generation.- MIDNet Neural Based Efficient Delivery of Multispectral Satellite Image Data.- A Lifelong Conflict Aware AGV Routing System.- BustedURL Collaborative Multi Agent System for Real Time Malicious URL Detection.- Sherpherding Track Papers.- Recommendation Algorithm to Further Ethereum Client Diversity.- Maximum Weight Relative Fair Clique Computation in Attributed Graphs.- An Experimental Evaluation of LLM on Image Classification.- Facial Memorization of Diffusion Model.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.