E-Book, Englisch, 560 Seiten
Clarkson / Eckert Design Process Improvement
1. Auflage 2010
ISBN: 978-1-84628-061-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
A review of current practice
E-Book, Englisch, 560 Seiten
ISBN: 978-1-84628-061-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
vi The process is important! I learned this lesson the hard way during my previous existence working as a design engineer with PA Consulting Group's Cambridge Technology Centre. One of my earliest assignments involved the development of a piece of labo- tory automation equipment for a major European pharmaceutical manufacturer.Two things stick in my mind from those early days - first, that the equipment was always to be ready for delivery in three weeks and,second,that being able to write well structured Pascal was not sufficient to deliver reliable software performance. Delivery was ultimately six months late,the project ran some sixty percent over budget and I gained my first promotion to Senior Engineer. At the time it puzzled me that I had been unable to predict the John Clarkson real effort required to complete the automation project - I had Reader in Engineering Design, genuinely believed that the project would be finished in three Director, Cambridge Engineering weeks.It was some years later that I discovered Kenneth Cooper's Design Centre papers describing the Rework Cycle and realised that I had been the victim of 'undiscovered rework'.I quickly learned that project plans were not just inaccurate,as most project managers would attest,but often grossly misleading,bearing little resemblance to actual development practice.
Autoren/Hrsg.
Weitere Infos & Material
1;Foreword;5
2;Preface;7
3;Table of Contents;11
4;Acknowledgements;15
5;Introduction The reality of design;16
5.1;Increasing complexity of design;18
5.2;The scope of design;19
5.2.1;Design across domains;20
5.2.2;Products;20
5.2.3;Activities;21
5.3;Pressures on design;25
5.3.1;Classical constraints;25
5.3.2;New challenges;27
5.3.3;Maintaining the right balance;28
5.4;Influences on design processes;29
5.4.1;Drivers;30
5.4.2;Dominant drivers;32
5.4.3;Characteristics;34
5.5;Patterns instead of models;34
5.5.1;Patterns of designing;34
5.5.2;An example of a pattern;36
5.5.3;Patterns as causal stories;36
5.5.4;The function of models and patterns;37
5.6;Successful processes;38
5.6.1;A simple design project?;38
5.6.2;Multiple intertwined processes;38
5.6.3;Errors in design;40
5.7;Conclusions;43
5.8;References;44
6;Design issues;46
6.1;Models of design;48
6.1.1;Chapter 1 Models of designing;49
6.1.1.1;Classifying models of designing;50
6.1.1.1.1;Stage-based vs activity-based models;51
6.1.1.1.2;Solution-oriented vs problem-oriented literature;51
6.1.1.1.3;Abstract vs procedural vs analytical approaches;52
6.1.1.2;Abstract approaches;53
6.1.1.2.1;Discussion;54
6.1.1.3;Procedural approaches;55
6.1.1.4;Design-focused literature;56
6.1.1.4.1;Discussion;61
6.1.1.5;Project-focused literature;62
6.1.1.5.1;Integration of personnel and disciplines;63
6.1.1.5.2;Consideration of manufacturing constraints;63
6.1.1.5.3;Verification and validation;64
6.1.1.5.4;Managing influences on the project;66
6.1.1.5.5;Process control and evaluation;69
6.1.1.5.6;Discussion;70
6.1.1.6;Conclusions;71
6.1.1.7;References;71
6.1.2;Chapter 2 Design planning and modelling;75
6.1.2.1;Engineering design;78
6.1.2.2;Applications of a model;80
6.1.2.3;Existing planning practice;82
6.1.2.4;Processes and process models;85
6.1.2.4.1;Frameworks and models;87
6.1.2.5;Modelling approaches;88
6.1.2.6;PERT / CPM;88
6.1.2.7;DSM;91
6.1.2.7.1;Signposting;94
6.1.2.7.2;Petri nets;97
6.1.2.7.3;Other frameworks;98
6.1.2.8;Conclusion;99
6.1.2.9;References;100
6.1.3;Chapter 3 Systems engineering;103
6.1.3.1;Systems engineering and ergonomics;105
6.1.3.2;Human factor mismatches in work systems;105
6.1.3.3;Error and systems engineering;108
6.1.3.3.1;Physical devices;109
6.1.3.3.2;Individual behaviour;111
6.1.3.3.3;Physical ergonomics;111
6.1.3.3.4;Team and group behaviour;111
6.1.3.3.5;Organisational and management behaviour;112
6.1.3.3.6;Legal and regulatory rules;113
6.1.3.3.7;Societal and cultural pressures;113
6.1.3.4;A systems approach to patient safety;113
6.1.3.4.1;Better models of design;116
6.1.3.5;Systems engineering and ergonomics as a process;119
6.1.3.6;Case study 1: computer-based infusion devices;119
6.1.3.6.1;Analysis of existing interface design;120
6.1.3.6.2;Implications;122
6.1.3.7;Case study 2: participatory design in a supermarket;122
6.1.3.7.1;Description of the system;122
6.1.3.7.2;Improvements made;124
6.1.3.8;Case study 3: mapping healthcare delivery systems;124
6.1.3.8.1;Methods;125
6.1.3.8.2;Summary;126
6.1.3.9;Conclusions;126
6.1.3.10;References;126
6.2;Perspectives on design;129
6.2.1;Chapter 4 Requirements engineering;130
6.2.1.1;An overview of the requirements engineering process;132
6.2.1.2;Goal modelling;134
6.2.1.2.1;Understanding the need for change;136
6.2.1.3;Business rules modelling;140
6.2.1.3.1;A framework for relating business rules to goals;141
6.2.1.3.2;Project boundaries identification;142
6.2.1.3.3;Business charting;143
6.2.1.3.4;Viewpoint analysis;143
6.2.1.3.5;Rule operationalisation;145
6.2.1.4;Conclusions;147
6.2.1.5;References;149
6.2.2;Chapter 5 Human resources;154
6.2.2.1;Process-based management approaches;155
6.2.2.2;Classification of business processes;156
6.2.2.3;Current challenges for management;158
6.2.2.4;Management in (business) networks;159
6.2.2.4.1;Interorganisational networks;160
6.2.2.4.2;Network communities;160
6.2.2.4.3;Implications for management;162
6.2.2.5;Knowledge, networks and processes;162
6.2.2.6;People make the process;164
6.2.2.6.1;Enabler: collaborative organisational context;165
6.2.2.6.2;Enabler: autonomy and personal liberty;166
6.2.2.6.3;Enabler: social capital;166
6.2.2.7;Implications for management;167
6.2.2.8;Conclusion;169
6.2.2.9;References;170
6.2.3;Chapter 6 Artificial intelligence for design process improvement;172
6.2.3.1;Artificial intelligence producing better theories;174
6.2.3.1.1;The basis;175
6.2.3.1.2;Configuration and learning;177
6.2.3.1.3;Creativity;178
6.2.3.2;Artificial intelligence involved in the process;179
6.2.3.3;Artificial intelligence producing better processes;181
6.2.3.3.1;Agent learning;181
6.2.3.3.2;Methodology generation;182
6.2.3.3.3;Planning;183
6.2.3.4;Conclusions;184
6.2.3.5;References;184
6.2.4;Chapter 7 Complexity;188
6.2.4.1;Complexity in an engineering context;190
6.2.4.1.1;Product structure;192
6.2.4.1.2;Mismatches;194
6.2.4.1.3;Emergence;194
6.2.4.2;Uncertainty;196
6.2.4.3;Complexity theory and design;199
6.2.4.3.1;Dynamics;199
6.2.4.3.2;Connectivity in dynamic systems;200
6.2.4.3.3;Structure;201
6.2.4.3.4;Search;202
6.2.4.4;Managing complexity;203
6.2.4.4.1;Simulation;203
6.2.4.4.2;Managing information complexity;205
6.2.4.5;Examples of complexity and design;205
6.2.4.5.1;Manufacturing as a complex system;206
6.2.4.5.2;Aerospace engineering design;207
6.2.4.6;Conclusions;209
6.2.4.7;References;209
6.2.5;Chapter 8 Thinking and representing in design;212
6.2.5.1;A psychological perspective;213
6.2.5.2;Overview;215
6.2.5.3;The role of mental and physical representations in design;215
6.2.5.3.1;Variety of use of representations;216
6.2.5.3.2;Representations support individual design problem solving;217
6.2.5.3.3;Joint designing and development of shared understanding;217
6.2.5.3.4;Communicating across object worlds;218
6.2.5.4;Mental representations;219
6.2.5.4.1;Types of information;219
6.2.5.4.2;Mental models;219
6.2.5.4.3;Working memory;220
6.2.5.4.4;Memory recall is reconstruction;221
6.2.5.4.5;Categories and exemplars as reference points;222
6.2.5.4.6;Multiple mental representations;222
6.2.5.4.7;Individual differences;224
6.2.5.5;Mental actions;225
6.2.5.5.1;Basic elements of design cognition;225
6.2.5.5.2;Situated cognition;226
6.2.5.5.3;Creating an understanding;227
6.2.5.5.4;Manipulating past designs;227
6.2.5.5.5;Design as skill;228
6.2.5.6;Mental actions: creative thinking;231
6.2.5.6.1;Designing with constraints;231
6.2.5.6.2;Analogical reasoning as a mechanism of creativity;232
6.2.5.6.3;Constraints enhance creativity;232
6.2.5.7;Improving representations in design processes;234
6.2.5.7.1;Visualisation;234
6.2.5.7.2;Cognitive dimensions;235
6.2.5.7.3;Conclusions;237
6.2.5.8;References;237
6.3;Design practice;244
6.3.1;Chapter 9 Communication in design;245
6.3.1.1;Theoretical background;246
6.3.1.1.1;General characteristics of communication;247
6.3.1.1.2;Information-centred theories;248
6.3.1.1.3;Interaction-centred theories;249
6.3.1.1.4;Situation-centred theories;250
6.3.1.1.5;Systemic view of communication;250
6.3.1.2;Characterising communication situations in design;252
6.3.1.2.1;Studies of communication in collaborative designing;253
6.3.1.2.2;Interaction scenarios;255
6.3.1.2.3;Handover;255
6.3.1.2.4;Joint designing;257
6.3.1.2.5;Interface negotiation;257
6.3.1.2.6;Request for information;258
6.3.1.2.7;Negotiation for clarity and negotiation of constraints;258
6.3.1.2.8;Idea generation;258
6.3.1.2.9;Conflict resolution;258
6.3.1.2.10;Decision making;258
6.3.1.2.11;Justification;259
6.3.1.3;Communication breakdown;259
6.3.1.3.1;Constructing meaning;259
6.3.1.3.2;Causes of communication breakdown;261
6.3.1.3.3;Not understanding the big picture;261
6.3.1.3.4;Missing information provision;261
6.3.1.3.5;Information distortion;262
6.3.1.3.6;Interpretation of representation;262
6.3.1.4;Managing communication;262
6.3.1.4.1;Improving internal communication;263
6.3.1.4.2;General awareness;263
6.3.1.4.3;Trusting atmosphere;264
6.3.1.4.4;Team composition;264
6.3.1.4.5;Interface management;265
6.3.1.4.6;Design of office space;265
6.3.1.4.7;Organisational settings;265
6.3.1.4.8;Communication audit;266
6.3.1.4.9;Understanding specific communication situations;267
6.3.1.4.10;Observations;267
6.3.1.4.11;Experiments;267
6.3.1.4.12;Interviews;268
6.3.1.5;Supporting communication with technology;268
6.3.1.6;Conclusions;270
6.3.1.7;References;270
6.3.2;Chapter 10 Engineering change;275
6.3.2.1;Engineering change and configuration management;277
6.3.2.2;Defining engineering change;279
6.3.2.3;Engineering change in the product life cycle;281
6.3.2.4;The engineering change process;282
6.3.2.4.1;Engineering change processes;282
6.3.2.4.2;A generic engineering change process;283
6.3.2.4.3;Break points in the change process;286
6.3.2.4.4;Engineering change process paperwork terminology;287
6.3.2.5;The impact of engineering change;287
6.3.2.6;Product architectures and change;288
6.3.2.6.1;Mass customisation;290
6.3.2.6.2;Modularity;290
6.3.2.6.3;Components and change;291
6.3.2.7;Strategies and methods to cope with engineering change;292
6.3.2.7.1;Prevention;292
6.3.2.7.2;Front loading;293
6.3.2.7.3;Effectiveness;294
6.3.2.7.4;Efficiency;294
6.3.2.7.5;Learning;295
6.3.2.8;Conclusions;295
6.3.2.9;References;295
6.3.3;Chapter 11 Risk in the design process;299
6.3.3.1;The nature of risk and uncertainty in engineering;301
6.3.3.1.1;Complexity;301
6.3.3.1.2;Human factors;302
6.3.3.2;Approaches to risk management;303
6.3.3.2.1;The risk management cycle;305
6.3.3.2.2;Risk management in practice;306
6.3.3.2.3;Risk in teams;308
6.3.3.3;The quantitative evaluation of risk and uncertainty;309
6.3.3.3.1;Other methods;311
6.3.3.3.2;Industrial application of quantitative methods;311
6.3.3.4;Risk perception;312
6.3.3.5;Conclusion;313
6.3.3.6;References;314
6.3.4;Chapter 12 Design for X;319
6.3.4.1;Definitions;321
6.3.4.1.1;Design for X approach;321
6.3.4.1.2;Design for X criteria;321
6.3.4.1.3;Design for X method;321
6.3.4.1.4;Design for X strategy;321
6.3.4.1.5;Design for X tools;322
6.3.4.2;An approach for structuring design for X criteria;322
6.3.4.3;Integrated product development as the basis of design for X;325
6.3.4.3.1;Concurrent engineering;325
6.3.4.4;Conventional support for the designer;326
6.3.4.5;Stand-alone information technology-based supporting tools;327
6.3.4.6;An integrated approach (Engineering Workbench mfk;328
6.3.4.6.1;Architecture and mode of operation of the Engineering Workbench;328
6.3.4.6.2;Product model;330
6.3.4.6.3;Knowledge processing in the Eengineering Workbench;331
6.3.4.7;DfX with the Engineering Workbench;332
6.3.4.7.1;Design for stress;332
6.3.4.7.2;Design for production;332
6.3.4.7.3;Design for casting;333
6.3.4.7.4;Design for tolerancing;334
6.3.4.7.5;Cost estimation;334
6.3.4.7.6;Design for environment/recycling;335
6.3.4.8;Conclusion;336
6.3.4.9;References;336
6.4;Design management;337
6.4.1;Chapter 13 Engineering knowledge management;338
6.4.1.1;Design process;340
6.4.1.2;Knowledge;342
6.4.1.3;Process and product knowledge;344
6.4.1.3.1;Process knowledge;344
6.4.1.3.2;Product knowledge;345
6.4.1.4;Supporting designers – design strategies;345
6.4.1.5;Supporting designers – design rationale;348
6.4.1.6;Conclusions;353
6.4.1.7;References;354
6.4.2;Chapter 14 Quality management;356
6.4.2.1;Design activities;358
6.4.2.2;People – cognitive style;360
6.4.2.3;Design methods (tools);361
6.4.2.3.1;Methods for divergent and convergent thinking;362
6.4.2.3.2;Specific design methods to improve quality;364
6.4.2.3.3;Quality function deployment;365
6.4.2.3.4;Taguchi principles;366
6.4.2.4;Reliability and maintainability;368
6.4.2.4.1;Failure rate prediction and the ‘reliability case’;368
6.4.2.4.2;The design specification;369
6.4.2.4.3;Concept design;370
6.4.2.4.4;Detail design;370
6.4.2.4.5;Specific design methods for failure analysis;371
6.4.2.5;Design review;373
6.4.2.5.1;A systematic procedure;373
6.4.2.5.2;Design review team;373
6.4.2.6;EN ISO 9001 quality systems;374
6.4.2.7;Conclusion;375
6.4.2.8;References;376
6.4.3;Chapter 15 Workflow for design;378
6.4.3.1;Process modelling;379
6.4.3.1.1;Definitions;381
6.4.3.1.2;Modelling requirements;381
6.4.3.1.3;Modelling with process elements;384
6.4.3.2;Process optimisation;386
6.4.3.2.1;Qualification balancing;386
6.4.3.2.2;Simultaneous engineering;387
6.4.3.2.3;Concurrent engineering;388
6.4.3.2.4;Time concentration;388
6.4.3.3;Process performance review;389
6.4.3.4;Process navigation with proNavigator;390
6.4.3.4.1;Process modelling;392
6.4.3.4.2;Process execution;392
6.4.3.4.3;Application examples;393
6.4.3.5;Conclusion;395
6.4.3.6;References;395
6.4.4;Chapter 16 Integrated new product development;398
6.4.4.1;Product development processes;400
6.4.4.2;Integrated new product development;402
6.4.4.2.1;Development of the iNPD process;403
6.4.4.2.2;The iNPD process;404
6.4.4.2.3;Identifying;404
6.4.4.2.4;Understanding;404
6.4.4.2.5;Conceptualising;404
6.4.4.2.6;Realising;405
6.4.4.3;Value opportunities;405
6.4.4.3.1;Emotion;406
6.4.4.3.2;Ergonomics;406
6.4.4.3.3;Aesthetics;406
6.4.4.3.4;Identity;407
6.4.4.3.5;Impact;407
6.4.4.3.6;Core technology;407
6.4.4.3.7;Quality;408
6.4.4.4;Case study: design of interior cleaning system for cars;410
6.4.4.5;Resource allocation in the experience economy;413
6.4.4.6;Conclusion;415
6.4.4.7;References;415
6.4.5;Chapter 17 Product portfolio management;416
6.4.5.1;The front end of product portfolio management;417
6.4.5.1.1;Horizontal differentiation;417
6.4.5.1.2;Vertical differentiation;418
6.4.5.2;The back end of product portfolio management;421
6.4.5.2.1;Mass customisation in perspective;421
6.4.5.2.2;Modularisation;422
6.4.5.2.3;Platforms;425
6.4.5.2.4;Multiple project management;433
6.4.5.3;Bringing the two together: project portfolio management;435
6.4.5.3.1;The strategic role of project portfolio management;435
6.4.5.3.2;Techniques for project portfolio management;436
6.4.5.3.3;Financial methods;438
6.4.5.3.4;Optimisation methods;439
6.4.5.3.5;Multi-criteria methods;439
6.4.5.3.6;Mapping methods;440
6.4.5.4;Conclusions;442
6.4.5.5;References;443
6.4.6;Chapter 18 The transfer of methods into industry;448
6.4.6.1;Studies of method implementation;450
6.4.6.1.1;Introduction of concurrent engineering;452
6.4.6.1.2;Introduction of new product development;453
6.4.6.1.3;Introduction of Total Quality Management;453
6.4.6.2;Model of method implementation;454
6.4.6.3;Strategies and guidance for method implementation;454
6.4.6.3.1;Initiation of the method implementation process;454
6.4.6.3.2;Analysis of the product development system;456
6.4.6.3.3;Choice and adaptation of methods;456
6.4.6.3.4;Implementation of methods;458
6.4.6.3.5;Evaluation of the impact;460
6.4.6.4;Case studies of method implementation;460
6.4.6.5;Conclusions;464
6.4.6.6;References;465
6.5;Design research;472
6.5.1;Chapter 19 Institute of Theoretical Psychology, University of Bamberg;474
6.5.1.1;Research topics: design as complex problem solving;475
6.5.1.1.1;Individual strategies;475
6.5.1.1.2;Teamwork and design processes in industry;475
6.5.1.1.3;Leadership in design;475
6.5.1.1.4;Communication processes;476
6.5.1.1.5;Transferability of results to other complex fields of work;476
6.5.1.1.6;Further reading;477
6.5.2;Chapter 20 Innovative Manufacturing Research Centre, University of Bath;478
6.5.2.1;Design technologies;478
6.5.2.2;Design information and knowledge;479
6.5.2.3;Conclusion;480
6.5.2.4;Further reading;481
6.5.3;Chapter 21 Engineering Design Centre, University of Cambridge;482
6.5.3.1;Research;482
6.5.3.2;Process improvement;483
6.5.3.3;Planning and scheduling;483
6.5.3.4;Engineering change;484
6.5.3.5;Communication;484
6.5.3.6;Complexity;484
6.5.3.7;Similarity;484
6.5.3.8;Visualisation;484
6.5.3.9;Comparative design;485
6.5.3.10;Further reading;485
6.5.4;Chapter 22 A culture of design research and teaching, Carnegie Mellon University;486
6.5.4.1;Electrical and computer engineering;487
6.5.4.2;Chemical engineering;487
6.5.4.3;Civil and environmental engineering;487
6.5.4.4;Biomedical engineering;488
6.5.4.5;Mechanical engineering;488
6.5.4.6;Further reading;489
6.5.5;Chapter 23 Product Development and Machine Elements, Darmstadt University of Technology;490
6.5.5.1;Design knowledge development;490
6.5.5.2;Collaborative project work;490
6.5.5.3;Empirical design research;491
6.5.5.4;Lifecycle design;491
6.5.5.5;Solid lubrication of ball bearings;492
6.5.5.6;Further reading;493
6.5.6;Chapter 24 School of Industrial Design Engineering, Delft University of Technology;494
6.5.6.1;Design theory and support;494
6.5.6.1.1;Methodology, tools and techniques;495
6.5.6.1.2;Lifecycle engineering: design for sustainability;495
6.5.6.2;Product functionality, aesthetics and experience;495
6.5.6.3;Design of future products;496
6.5.6.3.1;Product intelligence;496
6.5.6.3.2;Design for all;497
6.5.6.4;Further reading;497
6.5.7;Chapter 25 The Design Group, Technical University of Denmark;498
6.5.7.1;Design for X;499
6.5.7.2;Eco-design;499
6.5.7.3;Product modelling;500
6.5.7.4;Design methodologies;500
6.5.7.5;Understanding designing;500
6.5.7.6;Further reading;501
6.5.8;Chapter 26 The Systems Realization Laboratory, Georgia Institute of Technology;502
6.5.8.1;Research thrusts;502
6.5.8.1.1;Information modelling and simulations for collaborative distributed design;502
6.5.8.1.2;Design of next-generation product realisation technologies of multi-functional materials;503
6.5.8.1.3;Design for sustainable development;503
6.5.8.1.4;Applications;504
6.5.8.2;Foundation for success;504
6.5.8.3;Further reading;505
6.5.9;Chapter 27 Engineering Design Research, University of Grenoble;506
6.5.9.1;Information management in design;506
6.5.9.1.1;Knowledge management;507
6.5.9.1.2;Information modelling in the early design phases;507
6.5.9.1.3;Change management and design modifications;507
6.5.9.1.4;Modular design and design for the supply chain;507
6.5.9.2;Integrated design;507
6.5.9.2.1;Principles;508
6.5.9.2.2;Methodologies for integrated design, innovation;508
6.5.9.2.3;Product–process integration in design;508
6.5.9.2.4;Digital mock-ups for integrated design;509
6.5.9.2.5;Collaborative engineering and co-design;509
6.5.9.3;Further reading;509
6.5.10;Chapter 28 Institute of Machine Design and Automotive Engineering, University of Karlsruhe (TH);510
6.5.10.1;Contact and channel model;510
6.5.10.2;SPALTEN – an advanced problem-solving method;511
6.5.10.3;Design rules;511
6.5.10.4;Knowledge management;511
6.5.10.5;Multi-technology features;511
6.5.10.6;Computer-aided engineering methods;512
6.5.10.7;Chain of tribological testing;512
6.5.10.8;Integration of simulation and testing;512
6.5.10.9;Ramp-up cybernetics;513
6.5.10.10;Further reading;513
6.5.11;Chapter 29 Civil and Building Engineering, Loughborough University;514
6.5.11.1;Process improvement;515
6.5.11.2;Design planning and management;515
6.5.11.3;Standardisation and pre-assembly;515
6.5.11.4;Computer-aided collaborative conceptual design;516
6.5.11.5;Knowledge management;516
6.5.11.6;Collaborative working;516
6.5.11.7;Value management;516
6.5.11.8;Project process;517
6.5.11.9;Further reading;517
6.5.12;Chapter 30 Information Technologies in Mechanical Engineering, University of Magdeburg;518
6.5.12.1;Research areas;518
6.5.12.2;Dynamic process navigation;519
6.5.12.3;Integrated product development;519
6.5.12.4;Product modelling;520
6.5.12.5;Autogenetic design theory (ADT);520
6.5.12.6;Prediction of economical benefits;521
6.5.12.7;Further reading;521
6.5.13;Chapter 31 Design Process Research, Massachusetts Institute of Technology;522
6.5.13.1;Systems engineering;522
6.5.13.2;Design structure matrices;523
6.5.13.3;System modelling;523
6.5.13.4;Implementation dynamics;524
6.5.13.5;Axiomatic design;524
6.5.13.6;Knowledge and design aids;524
6.5.13.7;Further reading;525
6.5.14;Chapter 32 Institute of Product Development, Technische Universität München;526
6.5.14.1;Methods;526
6.5.14.2;Interdisciplinary collaboration;527
6.5.14.3;Tools;527
6.5.14.4;Individualised products;528
6.5.14.5;Transfer of methods into industry;528
6.5.14.6;Strategies;528
6.5.14.7;Cost;528
6.5.14.8;Innovation;529
6.5.14.9;Soft skills;529
6.5.14.10;Further reading;529
6.5.15;Chapter 33 Engineering Design Centre, University of Newcastle;530
6.5.15.1;Multiple-criteria design selection and synthesis;530
6.5.15.2;Robust scheduling in production design;531
6.5.15.3;Decision support for modelling and simulation;531
6.5.15.4;Modelling framework representation;531
6.5.15.5;Traceability in design;532
6.5.15.6;The application of margins in engineering design;532
6.5.15.7;Further reading;533
6.5.16;Chapter 34 Center for Design Research, Stanford University;534
6.5.16.1;The guiding question;534
6.5.16.2;The product is the team;534
6.5.16.3;Design team performance measurement;535
6.5.16.4;Depth through breadth;536
6.5.16.5;Affiliated labs and programs;536
6.5.16.6;Further reading;537
6.5.17;Chapter 35 Integrated Product Development, the Royal Institute of Technology, Stockholm;538
6.5.17.1;Engineering design research at KTH;538
6.5.17.2;Integrated product development;539
6.5.17.3;Education and training;540
6.5.17.4;Further reading;541
6.5.18;Chapter 36 The CAD Centre, University of Strathclyde;542
6.5.18.1;Research approach;543
6.5.18.2;Research areas;543
6.5.18.2.1;Knowledge engineering;543
6.5.18.2.2;Design management and coordination;544
6.5.18.2.3;Design reuse and machine learning;544
6.5.18.2.4;Product and knowledge modelling;544
6.5.18.3;Methods and tools;544
6.5.18.4;Further reading;545
6.5.19;Chapter 37 BAE SYSTEMS/Rolls-Royce University Technology Partnership for Design;546
6.5.19.1;Engineering knowledge management;547
6.5.19.1.1;Knowledge structure for design;548
6.5.19.1.2;Use of experience in design;548
6.5.19.1.3;Design rationale capture;548
6.5.19.1.4;Capturing and structuring design knowledge;548
6.5.19.1.5;Retrieving and using design knowledge;548
6.5.19.1.6;Information retrieval using design guidelines;549
6.5.19.2;Further reading;549
6.5.20;Chapter 38 M.J. Neeley School of Business, Texas Christian University;550
6.5.20.1;Process modelling;550
6.5.20.2;Process representation;551
6.5.20.3;Process model usage;551
6.5.20.3.1;Project planning and scheduling;551
6.5.20.3.2;Project execution and control;552
6.5.20.3.3;Risk and opportunity management;552
6.5.20.3.4;Knowledge management;553
6.5.20.4;Further reading;553
6.5.21;Chapter 39 Technological Innovation Research Group, Politecnico di Torino;554
6.5.21.1;The approach;554
6.5.21.1.1;Innovation policy;555
6.5.21.1.2;Business and product development;555
6.5.21.1.3;Industry transformation;555
6.5.21.2;The group;556
6.5.21.3;Research in product design and development;556
6.5.21.4;Further reading;556
6.5.22;Chapter 40 Intelligent Interactive Distributed Systems, Vrije Universiteit, Amsterdam;558
6.5.22.1;Design;558
6.5.22.2;Design process improvement;559
6.5.22.3;Design and the Internet;559
6.5.22.4;Distributed design;559
6.5.22.5;Design challenges;560
6.5.22.6;Further reading;560
6.5.23;Chapter 41 The Center for Engineering Learning and Technology, University of Washington;562
6.5.23.1;Design process;563
6.5.23.1.1;Iteration;563
6.5.23.1.2;Problem scoping;564
6.5.23.1.3;Communication;564
6.5.23.1.4;Design representations;564
6.5.23.2;Empirical characteristics of design content knowledge;564
6.5.23.3;Metrics;564
6.5.23.4;Bridging research and practice;565
6.5.23.5;Further reading;565
7;Index and authors;566
7.1;Keyword index;567
7.2;Authors, biographies;569




