Buch, Englisch, 441 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 776 g
Reihe: NATO Science for Peace and Security Series B: Physics and Biophysics
Buch, Englisch, 441 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 776 g
Reihe: NATO Science for Peace and Security Series B: Physics and Biophysics
ISBN: 978-1-4020-6963-5
Verlag: Springer Netherlands
This volume is the collected and extended notes from the lectures on Hamiltonian dynamical systems and their applications that were given at the NATO Advanced Study Institute in Montreal in 2007. Many aspects of the modern theory of the subject were covered at this event, including low dimensional problems. Applications are also presented to several important areas of research, including problems in classical mechanics, continuum mechanics, and partial differential equations.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Computeranwendungen in der Mathematik
- Naturwissenschaften Physik Angewandte Physik Statistische Physik, Dynamische Systeme
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Naturwissenschaften Physik Mechanik Klassische Mechanik, Newtonsche Mechanik
Weitere Infos & Material
Some aspects of finite-dimensional Hamiltonian dynamics.- Four lectures on the N-body problem.- Averaging method and adiabatic invariants.- Transformation theory of Hamiltonian PDE and the problem of water waves.- Three theorems on perturbed KdV.- Groups and topology in the Euler hydrodynamics and KdV.- Infinite dimensional dynamical systems and the Navier–Stokes equation.- Hamiltonian systems and optimal control.- KAM theory with applications to Hamiltonian partial differential equations.- Four lectures on KAM for the non-linear Schrödinger equation.- A Birkhoff normal form theorem for some semilinear PDEs.- Normal form of holomorphic dynamical systems.- Geometric approaches to the problem of instability in Hamiltonian systems. An informal presentation.- Variational methods for the problem of Arnold diffusion.- The calculus of variations and the forced pendulum.- Variational methods for Hamiltonian PDEs.- Spectral gaps of potentials in weighted Sobolev spaces.- On the well-posedness of the periodic KdV equation in high regularity classes.




