Craven | Functions of several variables | Buch | 978-0-412-23340-1 | www.sack.de

Buch, Englisch, 138 Seiten, Format (B × H): 148 mm x 210 mm, Gewicht: 202 g

Craven

Functions of several variables


1. Auflage 1981
ISBN: 978-0-412-23340-1
Verlag: Springer

Buch, Englisch, 138 Seiten, Format (B × H): 148 mm x 210 mm, Gewicht: 202 g

ISBN: 978-0-412-23340-1
Verlag: Springer


This book is aimed at mathematics students, typically in the second year of a university course. The first chapter, however, is suitable for first-year students. Differentiable functions are treated initially from the standpoint of approximating a curved surface locally by a fiat surface. This enables both geometric intuition, and some elementary matrix algebra, to be put to effective use. In Chapter 2, the required theorems - chain rule, inverse and implicit function theorems, etc- are stated, and proved (for n variables), concisely and rigorously. Chapter 3 deals with maxima and minima, including problems with equality and inequality constraints. The chapter includes criteria for discriminating between maxima, minima and saddlepoints for constrained problems; this material is relevant for applications, but most textbooks omit it. In Chapter 4, integration over areas, volumes, curves and surfaces is developed, and both the change-of-variable formula, and the Gauss-Green-Stokes set of theorems are obtained. The integrals are defined with approximative sums (ex pressed concisely by using step-functions); this preserves some geometrical (and physical) concept of what is happening. Consequent on this, the main ideas of the 'differential form' approach are presented, in a simple form which avoids much of the usual length and complexity. Many examples and exercises are included.

Craven Functions of several variables jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1. Differentiable Functions.- 1.1 Introduction.- 1.2 Linear part of a function.- 1.3 Vector viewpoint.- 1.4 Directional derivative.- 1.5 Tangent plane to a surface.- 1.6 Vector functions.- 1.7 Functions of functions.- 2. Chain Rule and Inverse Function Theorem.- 2.1 Norms.- 2.2 Fréchet derivatives.- 2.3 Chain rule.- 2.4 Inverse function theorem.- 2.5 Implicit functions.- 2.6 Functional dependence.- 2.7 Higher derivatives.- 3. Maxima and Minima.- 3.1 Extrema and stationary points.- 3.2 Constrained minima and Lagrange multipliers.- 3.3 Discriminating constrained stationary points.- 3.4 Inequality constraints.- 3.5 Discriminating maxima and minima with inequality constraints 62 Further reading.- 4. Integrating Functions of Several Variables.- 4.1 Basic ideas of integration.- 4.2 Double integrals.- 4.3 Length, area and volume.- 4.4 Integrals over curves and surfaces.- 4.5 Differential forms.- 4.6 Stokes’s theorem.- Further reading.- Appendices.- A. Background required in linear algebra and elementary calculus.- B. Compact sets, continuous functions and partitions of unity.- C. Answers to selected exercises.- Index (including table of some special symbols).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.