E-Book, Englisch, 367 Seiten
Cui / Liu / Smith Metamaterials
1. Auflage 2009
ISBN: 978-1-4419-0573-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Theory, Design, and Applications
E-Book, Englisch, 367 Seiten
ISBN: 978-1-4419-0573-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Metamaterials:Theory, Design, and Applications goes beyond left-handed materials (LHM) or negative index materials (NIM) and focuses on recent research activity. Included here is an introduction to optical transformation theory, revealing invisible cloaks, EM concentrators, beam splitters, and new-type antennas, a presentation of general theory on artificial metamaterials composed of periodic structures, coverage of a new rapid design method for inhomogeneous metamaterials, which makes it easier to design a cloak, and new developments including but not limited to experimental verification of invisible cloaks, FDTD simulations of invisible cloaks, the microwave and RF applications of metamaterials, sub-wavelength imaging using anisotropic metamaterials, dynamical metamaterial systems, photonic metamaterials, and magnetic plasmon effects of metamaterials.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Acknowledgments;9
3;Contents;10
4;List of Contributors;16
5;1 Introduction to Metamaterials;21
6;Tie Jun Cui, Ruopeng Liu and David R. Smith;21
6.1;1.1 What Is Metamaterial?;21
6.2;1.2 From Left-Handed Material to Invisible Cloak: A Brief History;24
6.3;1.3 Optical Transformation and Control of Electromagnetic Waves;25
6.4;1.4 Homogenization of Artificial Particles and Effective Medium Theory;26
6.4.1;1.4.1 General Description;26
6.4.2;1.4.2 A TL-Metamaterial Example ;28
6.5;1.5 Rapid Design of Metamaterials;34
6.6;1.6 Resonant and Non-resonant Metamaterials;34
6.7;1.7 Applications of Metamaterials;36
6.8;1.8 Computational Electromagnetics: A New Aspect of Metamaterials;36
6.9;References;37
7;2 Optical Transformation Theory;40
8;Wei Xiang Jiang and Tie Jun Cui;40
8.1;2.1 Introduction;40
8.2;2.2 Optical Transformation Medium;41
8.3;2.3 Transformation Devices;44
8.3.1;2.3.1 Invisibility Cloaks;44
8.3.2;2.3.2 EM Concentrators;52
8.3.3;2.3.3 EM-Field and Polarization Rotators;54
8.3.4;2.3.4 Wave-Shape Transformers;55
8.3.5;2.3.5 EM-Wave Bending;56
8.3.6;2.3.6 More Invisibility Devices;58
8.3.7;2.3.7 Other Optical-Transformation Devices;60
8.4;2.4 Summary;62
8.5;References;63
9;3 General Theory on Artificial Metamaterials;68
10;Ruopeng Liu, Tie Jun Cui and David R. Smith ;68
10.1;3.1 Local Field Response and Spatial Dispersion Effect on Metamaterials;69
10.2;3.2 Spatial Dispersion Model on Artificial Metamaterials;72
10.3;3.3 Explanation of the Behavior on Metamaterial Structures;74
10.4;3.4 Verification of the Spatial Dispersion Model;75
10.5;References;77
11;4 Rapid Design for Metamaterials;79
12;Jessie Y. Chin, Ruopeng Liu, Tie Jun Cui and David R. Smith;79
12.1;4.1 Introduction;80
12.2;4.2 The Algorithm of Rapid Design for Metamaterials;81
12.2.1;4.2.1 Schematic Description of Rapid Design;81
12.2.2;4.2.2 Particle Level Design;82
12.3;4.3 Examples;93
12.3.1;4.3.1 Gradient Index Lens by ELC;93
12.3.2;4.3.2 Gradient-Index Metamaterials Designed with Three Variables;97
12.3.3;4.3.3 Reduced Parameter Invisible Cloak;97
12.3.4;4.3.4 Metamaterial Polarizer;99
12.4;4.4 Summary;100
12.5;References;101
13;5 Broadband and Low-Loss Non-Resonant Metamaterials;104
14;Ruopeng Liu, Qiang Cheng, Tie Jun Cui and David R. Smith;104
14.1;5.1 Analysis of the Metamaterial Structure;104
14.2;5.2 Demonstration of Broadband Inhomogeneous Metamaterials;110
14.3;References;113
15;6 Experiment on Cloaking Devices;115
16;Ruopeng Liu, Jessie Y. Chin, Chunlin Ji, Tie Jun Cuiand David R. Smith;115
16.1;6.1 Invisibility Cloak Design in Free Space;115
16.2;6.2 Transformation Optics Approach to Theoretical Design of Broadband Ground Plane Cloak;119
16.3;6.3 Metamaterial Structure Design to Implement Ground-PlaneCloak;122
16.4;6.4 Experimental Measurement Platform;124
16.5;6.5 Field Measurement on the Ground-Plane Cloak;126
16.6;6.6 Power and Standing Wave Measurement on the Ground-Plane Cloak;128
16.7;6.7 Conclusion;130
16.8;References;130
17;7 Finite-Difference Time-Domain Modeling of Electromagnetic Cloaks ;131
18;Christos Argyropoulos, Yan Zhao, Efthymios Kallos and Yang Hao;131
18.1;7.1 Introduction;132
18.2;7.2 FDTD Modeling of Two-Dimensional Lossy Cylindrical Cloaks;133
18.2.1;7.2.1 Derivation of the Method;133
18.2.2;7.2.2 Discussion and Stability Analysis;140
18.2.3;7.2.3 Numerical Results;142
18.3;7.3 Parallel Dispersive FDTD Modeling of Three-Dimensional Spherical Cloaks;147
18.4;7.4 FDTD Modeling of the Ground-Plane Cloak;160
18.5;7.5 Conclusion;166
18.6;References;167
19;8 Compensated Anisotropic Metamaterials: Manipulating Sub-wavelength Images;170
20;Yijun Feng;170
20.1;8.1 Introduction;170
20.2;8.2 Compensated Anisotropic Metamaterial Bilayer;172
20.2.1;8.2.1 Anisotropic Metamaterials;173
20.2.2;8.2.2 Compensated Bilayer of AMMs;174
20.3;8.3 Sub-wavelength Imaging by Compensated Anisotropic Metamaterial Bilayer;176
20.3.1;8.3.1 Compensated AMM Bilayer Lens;176
20.3.2;8.3.2 Loss and Retardation Effects;178
20.4;8.4 Compensated Anisotropic Metamaterial Prisms: Manipulating Sub-wavelength Images;180
20.4.1;8.4.1 General Compensated Bilayer Structure;181
20.4.2;8.4.2 Compensated AMM Prism Structures;182
20.5;8.5 Realizing Compensated AMM Bilayer Lens by Transmission-Line Metamaterials;187
20.5.1;8.5.1 Transmission Line Models of AMMs;187
20.5.2;8.5.2 Realization of Compensated Bilayer Lens Through TL Metamaterials;189
20.5.3;8.5.3 Simulation and Measurement of the TL Bilayer Lens;191
20.6;8.6 Summary;194
20.7;References;195
21;9 The Dynamical Study of the Metamaterial Systems;197
22;Xunya Jiang, Zheng Liu, Zixian Liang, Peijun Yao, Xulin Lin and Huanyang Chen;197
22.1;9.1 Introduction;197
22.2;9.2 The Temporal Coherence Gain of the Negative-Index Superlens Image;200
22.3;9.3 The Physical Picture and the Essential Elements of the Dynamical Process for Dispersive Cloaking Structures;206
22.4;9.4 Limitation of the Electromagnetic Cloak with DispersiveMaterial;212
22.5;9.5 Expanding the Working Frequency Range of Cloak;218
22.6;9.6 Summary;226
22.7;References;226
23;10 Photonic Metamaterials Based on Fractal Geometry;229
24;Xueqin Huang, Shiyi Xiao, Lei Zhou, Weijia Wen, C. T. Chan and Ping Sheng;229
24.1;10.1 Introduction;229
24.2;10.2 Electric Metamaterials Based on Fractal Geometry;232
24.2.1;10.2.1 Characterization and Modeling of a Metallic FractalPlate;232
24.2.2;10.2.2 Mimicking Photonic Bandgap Materials;236
24.2.3;10.2.3 Subwavelength Reflectivity;237
24.3;10.3 Magnetic Metamaterials Based on Fractal Geometry;239
24.3.1;10.3.1 Characterizations and Modeling of the Fractal Magnetic Metamaterial;239
24.3.2;10.3.2 A Typical Application of the Fractal Magnetic Metamaterial;243
24.4;10.4 Plasmonic Metamaterials Based on Fractal Geometry;243
24.4.1;10.4.1 SPP Band Structures of Fractal Plasmonic Metamaterials;243
24.4.2;10.4.2 Extraordinary Optical Transmissions Through Fractal Plasmonic Metamaterials;246
24.4.3;10.4.3 Super Imaging with a Fractal Plasmonic Metamaterial as a Lens;250
24.5;10.5 Other Applications of Fractal Photonic Metamaterials;252
24.5.1;10.5.1 Perfect EM Wave Tunneling Through Negative Permittivity Medium;253
24.5.2;10.5.2 Manipulating Light Polarizations with Anisotropic Magnetic Metamaterials;255
24.6;10.6 Conclusions;257
24.7;References;257
25;11 Magnetic Plasmon Modes Introduced by the Coupling Effect in Metamaterials;260
26;H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu and X. Zhang;260
26.1;11.1 Introduction;261
26.2;11.2 Hybrid Magnetic Plasmon Modes in Two Coupled Magnetic Resonators;264
26.3;11.3 Magnetic Plasmon Modes in One-Dimensional Chain of Resonators;269
26.4;11.4 Magnetic Plasmon Modes in Two-Dimensional Metamaterials;275
26.5;11.5 Outlook;278
26.6;References;279
27;12 Enhancing Light Coupling with Plasmonic Optical Antennas ;283
28;Jun Xu, Anil Kumar, Pratik Chaturvedi, Keng H. Hsu and Nicholas X. Fang;283
28.1;12.1 Introduction;283
28.2;12.2 Fabrication Methods;287
28.2.1;12.2.1 Electron Beam Lithography;287
28.2.2;12.2.2 Solid-State Superionic Stamping;288
28.3;12.3 Measurement and Analysis;289
28.3.1;12.3.1 Optical Scattering by Nanoantennas;290
28.3.2;12.3.2 Cathodoluminescence Spectroscopy;295
28.4;12.4 Application;299
28.4.1;12.4.1 Surface-Enhanced Raman Spectroscopy;299
28.5;12.5 Summary;302
28.6;References;302
29;13 Wideband and Low-Loss Metamaterialsfor Microwave and RF Applications: Fast Algorithm and Antenna Design ;304
30;Le-Wei Li, Ya-Nan Li and Li Hu;304
30.1;13.1 Adaptive Integral Method (AIM) for Left-Handed Material (LHM) Simulation;305
30.1.1;13.1.1 Hybrid Volume--Surface Integral Equation (VSIE)and MoM for SRRs;305
30.1.2;13.1.2 Formulations for AIM;307
30.1.3;13.1.3 Numerical Results of AIM Simulation;309
30.2;13.2 ASED-AIM for LHM Numerical Simulations;311
30.2.1;13.2.1 Formulations for Hybrid VSIE and ASED-AIM;312
30.2.2;13.2.2 Computational Complexity and Memory Requirement for the ASED-AIM;315
30.2.3;13.2.3 Numerical Results of the ASED-AIM;316
30.3;13.3 A Novel Design of Wideband LHM Antennafor Microwave/RF Applications;322
30.3.1;13.3.1 Microstrip Patch Antenna and LHM Applications;322
30.3.2;13.3.2 A Novel Design of Wideband LH Antenna;322
30.3.3;13.3.3 Simulation and Measurement Results;324
30.4;References;328
31;14 Experiments and Applications of Metamaterials in Microwave Regime;331
32;Qiang Cheng, X. M. Yang, H. F. Ma, J. Y. Chin, T. J. Cui, R. Liu and D. R. Smith;331
32.1;14.1 Introduction;331
32.2;14.2 Gradient Index Circuit by Waveguided Metamaterials;332
32.3;14.3 Experimental Demonstration of Electromagnetic Tunneling Through an Epsilon-Near-Zero Metamaterial at Microwave Frequencies;337
32.4;14.4 Partial Focusing by Indefinite Complementary Metamaterials;342
32.5;14.5 A Metamaterial Luneberg Lens Antenna;348
32.6;14.6 Metamaterial Polarizers by Electric-Field-Coupled Resonators;351
32.7;14.7 An Efficient Broadband Metamaterial Wave Retarder;357
32.8;References;363
33;15 Left-handed Transmission Line of Low Pass and Its Applications ;366
34;Xin Hu and Sailing He;366
34.1;15.1 Introduction;366
34.2;15.2 Theory;367
34.3;15.3 Application: A 180 Hybrid Ring (Rat-Race);371
34.4;15.4 Conclusion;373
34.5;References;373
35;Index;374




