Dam / Nikolic / Lukszo | Agent-Based Modelling of Socio-Technical Systems | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 9, 285 Seiten

Reihe: Agent-Based Social Systems

Dam / Nikolic / Lukszo Agent-Based Modelling of Socio-Technical Systems


1. Auflage 2012
ISBN: 978-94-007-4933-7
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 9, 285 Seiten

Reihe: Agent-Based Social Systems

ISBN: 978-94-007-4933-7
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark



Decision makers in large scale interconnected network systems require simulation models for decision support. The behaviour of these systems is determined by many actors, situated in a dynamic, multi-actor, multi-objective and multi-level environment. How can such systems be modelled and how can the socio-technical complexity be captured? Agent-based modelling is a proven approach to handle this challenge. This book provides a practical introduction to agent-based modelling of socio-technical systems, based on a methodology that has been developed at TU Delft and which has been deployed in a large number of case studies. The book consists of two parts: the first presents the background, theory and methodology as well as practical guidelines and procedures for building models. In the second part this theory is applied to a number of case studies, where for each model the development steps are presented extensively, preparing the reader for creating own models.

Dam / Nikolic / Lukszo Agent-Based Modelling of Socio-Technical Systems jetzt bestellen!

Weitere Infos & Material


1;Agent-Based Modelling of Socio-Technical Systems;4
1.1;Foreword;6
1.2;Preface;9
1.3;Contents;11
1.4;Contributors;17
1.5;List of Figures;23
1.6;List of Tables;26
2;Chapter 1: Introduction;27
2.1;1.1 Why This Book?;27
2.2;1.2 Infrastructures as Complex Adaptive Socio-technical Systems;28
2.3;1.3 Better Decision-Making Needed;30
2.4;1.4 Agent-Based Modelling for Decision Support;31
2.5;1.5 A Book in Two Parts;33
2.5.1;Acknowledgements;33
2.6;References;33
3;Part I: Theory and Practice;35
3.1;Chapter 2: Theory;36
3.1.1;2.1 Introduction;36
3.1.1.1;2.1.1 Focus;37
3.1.1.2;2.1.2 Structure of the Chapter;37
3.1.1.3;2.1.3 Example: Westland Greenhouse Cluster;38
3.1.2;2.2 Systems;39
3.1.2.1;2.2.1 History of Systems Thinking;39
3.1.2.1.1;Greenhouse Example;40
3.1.2.2;2.2.2 Systems;41
3.1.2.2.1;Idealisation;42
3.1.2.2.2;Multiple Components;42
3.1.2.2.3;Components Are Interdependent;42
3.1.2.2.4;Organised;43
3.1.2.2.5;Emergent Properties;43
3.1.2.2.6;Boundaries;43
3.1.2.2.7;Enduring;43
3.1.2.2.8;Environment;44
3.1.2.2.9;Feedback;44
3.1.2.2.10;Non-trivial Behaviour;44
3.1.2.3;2.2.3 World Views;44
3.1.2.3.1;Greenhouse Example;45
3.1.2.4;2.2.4 Observer-Dependence;46
3.1.2.4.1;Objectivity;46
3.1.2.4.2;Greenhouse Example;47
3.1.2.4.3;Reductionism and Holism;48
3.1.2.4.4;Greenhouse Example;49
3.1.2.5;2.2.5 System Boundaries;49
3.1.2.6;2.2.6 System Nestedness;50
3.1.2.6.1;Greenhouse Example;51
3.1.3;2.3 Adaptive;51
3.1.3.1;2.3.1 Adaptation Versus Evolution;52
3.1.3.2;2.3.2 Evolution-More than just Biology;53
3.1.3.3;2.3.3 Adaptation in Its Many Forms;55
3.1.3.4;2.3.4 Direction of Adaptation;56
3.1.3.5;2.3.5 Coupled Fitness Landscape;57
3.1.3.5.1;Irreversibility;59
3.1.3.6;2.3.6 Intractability;59
3.1.4;2.4 Complexity;61
3.1.4.1;2.4.1 Simple;61
3.1.4.1.1;Functional Simplicity;62
3.1.4.1.2;Structural Simplicity;63
3.1.4.1.3;Occam's Razor;63
3.1.4.1.4;Greenhouse Example;64
3.1.4.2;2.4.2 Complicated;64
3.1.4.2.1;Greenhouse Example;66
3.1.4.3;2.4.3 Complex;66
3.1.4.3.1;Dynamics;67
3.1.4.3.2;Self-similarity or Scale Invariance;68
3.1.4.3.3;Greenhouse Example;69
3.1.5;2.5 Complex Adaptive Systems;69
3.1.5.1;Greenhouse Example;70
3.1.5.2;2.5.1 Chaos and Randomness;70
3.1.5.2.1;Repetition;71
3.1.5.2.2;Deterministic;71
3.1.5.2.3;Initial Conditions;71
3.1.5.2.4;Attractors;72
3.1.5.2.5;Instability and Robustness;72
3.1.5.2.6;Greenhouse Example;73
3.1.5.3;2.5.2 Emergence, Self-organisation and Patterns;73
3.1.5.3.1;Greenhouse Example;74
3.1.5.3.2;Self-organisation;75
3.1.5.3.3;Patterns;75
3.1.6;2.6 Modelling Complex Adaptive Systems;76
3.1.6.1;2.6.1 What Does a Model of a Complex Adaptive System Need?;76
3.1.6.1.1;Multi-domain and Multi-disciplinary Knowledge;77
3.1.6.1.2;Generative and Bottom up Capacity;78
3.1.6.1.3;Adaptivity;78
3.1.6.1.4;Modelling Options;78
3.1.6.2;2.6.2 Agent-Based Modelling;79
3.1.6.3;2.6.3 What It Is and Is not;80
3.1.6.3.1;Agent-Based Model;80
3.1.6.3.2;Multi-agent System;81
3.1.6.3.3;Arti?cial Intelligence;81
3.1.6.3.4;Object-Oriented Program?;82
3.1.7;2.7 Anatomy of an Agent-Based Model;82
3.1.7.1;2.7.1 Agent;82
3.1.7.1.1;2.7.1.1 State;83
3.1.7.1.2;2.7.1.2 Changing States;84
3.1.7.1.2.1;Rules;84
3.1.7.1.2.2;Actions;85
3.1.7.1.2.3;Behaviour;85
3.1.7.1.2.4;Greenhouse Example;85
3.1.7.2;2.7.2 Environment;86
3.1.7.2.1;2.7.2.1 Information;86
3.1.7.2.2;2.7.2.2 Structure;87
3.1.7.2.2.1;Soup;88
3.1.7.2.2.2;Space;88
3.1.7.2.2.3;Small-World Networks;89
3.1.7.2.2.4;Scale-Free Networks;89
3.1.7.2.2.5;Greenhouse Example;90
3.1.7.3;2.7.3 Time;90
3.1.7.3.1;Discrete Time;91
3.1.7.3.2;Assumption of Parallelism;91
3.1.7.3.3;Scheduler;91
3.1.7.3.4;Greenhouse Example;92
3.1.8;References;93
3.2;Chapter 3: Practice;97
3.2.1;3.1 Introduction;97
3.2.2;3.2 Step 1: Problem Formulation and Actor Identi?cation;98
3.2.2.1;3.2.1 Step 1 Example;99
3.2.2.1.1;Example: Westland Greenhouse Cluster;100
3.2.2.1.2;What Is the Problem;100
3.2.2.1.3;Initial Hypothesis;100
3.2.2.1.4;Whose Problem Are We Addressing?;100
3.2.2.1.5;Other Actors;100
3.2.2.1.6;Our Role;101
3.2.3;3.3 Step 2: System Identi?cation and Decomposition;101
3.2.3.1;3.3.1 Inventory;101
3.2.3.2;3.3.2 Structuring;102
3.2.3.2.1;3.3.2.1 Structuring of Agents and Interactions;103
3.2.3.2.2;3.3.2.2 Iteration;103
3.2.3.2.3;3.3.2.3 Environment;104
3.2.3.3;3.3.3 Step 2 Example;105
3.2.4;3.4 Step 3: Concept Formalisation;106
3.2.4.1;3.4.1 Software Data Structures;107
3.2.4.2;3.4.2 Ontology;108
3.2.4.3;3.4.3 Step 3 Example;109
3.2.4.3.1;Software Data Structures;109
3.2.4.3.2;Ontology;110
3.2.5;3.5 Step 4: Model Formalisation;112
3.2.5.1;3.5.1 Developing a Model Narrative;112
3.2.5.2;3.5.2 Pseudo-code;113
3.2.5.2.1;3.5.2.1 Elements of Pseudo-code;113
3.2.5.2.1.1;Computation and Assignment;113
3.2.5.2.1.2;Iterations and Loops;114
3.2.5.2.1.3;Conditions;114
3.2.5.2.1.4;Input/Output;115
3.2.5.2.2;3.5.2.2 Uni?ed Modelling Language;115
3.2.5.3;3.5.3 Step 4 Example;116
3.2.5.3.1;Model Narrative Example, Actions per Time Tick;116
3.2.5.3.2;Pseudo-code;116
3.2.6;3.6 Step 5: Software Implementation;117
3.2.6.1;3.6.1 Modelling Environment;118
3.2.6.1.1;3.6.1.1 NetLogo;118
3.2.6.1.2;3.6.1.2 Repast;118
3.2.6.1.3;3.6.1.3 Custom Code;119
3.2.6.2;3.6.2 Programming Practices;119
3.2.6.2.1;3.6.2.1 Version Control;120
3.2.6.2.2;3.6.2.2 Documenting Code;120
3.2.6.2.3;3.6.2.3 Naming Conventions;121
3.2.6.2.4;3.6.2.4 Divisions of Tasks and Responsibilities;121
3.2.6.2.5;3.6.2.5 Bug Tracking;121
3.2.6.3;3.6.3 Step 5 Example;122
3.2.6.3.1;NetLogo;122
3.2.7;3.7 Step 6: Model Veri?cation;122
3.2.7.1;3.7.1 Recording and Tracking Agent Behaviour;124
3.2.7.2;3.7.2 Single-Agent Testing;125
3.2.7.2.1;3.7.2.1 Theoretical Prediction and Sanity Checks;125
3.2.7.2.2;3.7.2.2 Breaking the Agent;126
3.2.7.3;3.7.3 Interaction Testing in a Minimal Model;126
3.2.7.4;3.7.4 Multi-agent Testing;127
3.2.7.4.1;3.7.4.1 Variability Testing;127
3.2.7.4.2;3.7.4.2 Timeline Sanity;128
3.2.7.5;3.7.5 Step 6 Example;128
3.2.8;3.8 Step 7: Experimentation;129
3.2.8.1;3.8.1 Experiment Design Aspects;129
3.2.8.1.1;3.8.1.1 Hypothesis Type;129
3.2.8.1.2;3.8.1.2 Time;131
3.2.8.1.3;3.8.1.3 Scenarios and Scenario Space;131
3.2.8.2;3.8.2 Experiment Setup;132
3.2.8.2.1;3.8.2.1 Full Factorial;132
3.2.8.2.2;3.8.2.2 Random Parameter;133
3.2.8.2.3;3.8.2.3 Latin Hypercube Sampling;133
3.2.8.2.4;3.8.2.4 Monte Carlo;134
3.2.8.2.5;3.8.2.5 Repetitions;134
3.2.8.2.6;3.8.2.6 Random Seed;135
3.2.8.3;3.8.3 Experiment Execution;136
3.2.8.3.1;3.8.3.1 Running on a Single Computer;136
3.2.8.3.2;3.8.3.2 Scaling, Running on Clusters;137
3.2.8.3.3;3.8.3.3 Collecting and Storing Data;137
3.2.8.3.4;3.8.3.4 Checking Data Consistency;138
3.2.8.4;3.8.4 Step 7 Example;138
3.2.8.4.1;Hypothesis Example;138
3.2.9;3.9 Step 8: Data Analysis;140
3.2.9.1;3.9.1 Data Exploration;140
3.2.9.1.1;3.9.1.1 Hypothesis Driven Analysis;141
3.2.9.1.2;3.9.1.2 Location of Patterns;141
3.2.9.1.3;3.9.1.3 Data Analysis;142
3.2.9.1.4;3.9.1.4 Analysis Tools;142
3.2.9.2;3.9.2 Pattern Visualisation and Identi?cation;144
3.2.9.2.1;3.9.2.1 Recognising Emergent Patterns;144
3.2.9.2.1.1;Dynamic Behaviour;144
3.2.9.2.1.2;Attractor Changes;144
3.2.9.2.1.3;Metastable Behaviour;144
3.2.9.2.1.4;Lack of a Pattern;144
3.2.9.2.2;3.9.2.2 Visualisation;144
3.2.9.2.2.1;Network Representation;146
3.2.9.2.2.2;Animation;146
3.2.9.2.3;3.9.2.3 Visualisation Caveats;146
3.2.9.3;3.9.3 Pattern Interpretation and Explanation;147
3.2.9.4;3.9.4 Experiment Iteration;147
3.2.9.5;3.9.5 Step 8 Example;148
3.2.9.5.1;Hypothesis Driven Analysis;148
3.2.10;3.10 Step 9: Model Validation;150
3.2.10.1;3.10.1 Historic Replay;151
3.2.10.2;3.10.2 Expert Validation;152
3.2.10.3;3.10.3 Validation by Literature Comparison;153
3.2.10.4;3.10.4 Validation by Model Replication;153
3.2.10.5;3.10.5 Step 9 Example;154
3.2.10.5.1;Expert Validation;154
3.2.11;3.11 Step 10: Model Use;154
3.2.11.1;3.11.1 Outcome Presentation;155
3.2.11.2;3.11.2 Raising New Questions;155
3.2.11.3;3.11.3 Long Term Stakeholder Engagement;156
3.2.11.4;3.11.4 Agent-Based Models and Stakeholders;156
3.2.11.5;3.11.5 Computer Models and Mental Models;157
3.2.11.6;3.11.6 Step 10 Example;158
3.2.12;3.12 Chapter Conclusions;159
3.2.13;References;160
4;Part II: Case Studies;162
4.1;Chapter 4: Introduction to the Case Studies;163
4.1.1;4.1 Case Studies;163
4.1.1.1;4.1.1 Operational Models;164
4.1.1.2;4.1.2 Tactical Models;164
4.1.1.3;4.1.3 Strategic Models;164
4.1.1.4;4.1.4 Setup of Case Study Chapters;165
4.1.1.5;4.1.5 State-of-the-Art Modelling;166
4.1.2;4.2 An Ontology for Socio-technical Systems;166
4.1.2.1;4.2.1 Aims;166
4.1.2.2;4.2.2 Development;167
4.1.2.3;4.2.3 Key Concepts;168
4.1.2.4;4.2.4 Usage;169
4.1.3;References;171
4.2;Chapter 5: Agent-Based Models of Supply Chains;172
4.2.1;5.1 Introduction;172
4.2.1.1;5.1.1 Supply Chains;173
4.2.1.2;5.1.2 Abnormal Situation Management;173
4.2.1.3;5.1.3 Supply Chain Modelling;174
4.2.1.4;5.1.4 Chapter Organisation;175
4.2.2;5.2 Oil Re?nery Supply Chain;175
4.2.2.1;5.2.1 Step 1: Problem Formulation and Actor Identi?cation;175
4.2.2.2;5.2.2 Step 2: System Identi?cation and Decomposition;176
4.2.3;5.3 Multi-plant Enterprise Supply Chain;180
4.2.3.1;5.3.1 Step 1: Problem Formulation and Actor Identi?cation;180
4.2.3.2;5.3.2 Step 2: System Identi?cation and Decomposition;181
4.2.4;5.4 Step 3: Concept Formalisation;181
4.2.5;5.5 Step 4: Model Formalisation;185
4.2.5.1;5.5.1 Procurement;185
4.2.5.2;5.5.2 Order Assignment;186
4.2.6;5.6 Step 5: Software Implementation;188
4.2.7;5.7 Step 6: Model Veri?cation;188
4.2.8;5.8 Step 7: Experimentation;190
4.2.8.1;5.8.1 Experimental Setup for the Oil Re?nery Supply Chain;190
4.2.8.2;5.8.2 Experimental Setup for the Multi-plant Enterprise;193
4.2.9;5.9 Step 8: Data Analysis;194
4.2.9.1;5.9.1 Delay in Shipment in the Oil Re?nery Supply Chain;194
4.2.9.2;5.9.2 Normal and Abnormal Behaviour Analysis for the Multi-plant Enterprise;195
4.2.10;5.10 Step 9: Model Validation;198
4.2.11;5.11 Step 10: Model Use;198
4.2.12;5.12 Conclusions;199
4.2.13;References;200
4.3;Chapter 6: An Agent-Based Model of Consumer Lighting;202
4.3.1;6.1 Introduction;202
4.3.2;6.2 Step 1: Problem Formulation and Actor Identi?cation;204
4.3.3;6.3 Step 2: System Identi?cation and Decomposition;204
4.3.3.1;6.3.1 Inventory;204
4.3.3.1.1;6.3.1.1 Social Subsystem;205
4.3.3.1.2;6.3.1.2 Technological Subsystem;205
4.3.3.1.3;6.3.1.3 Interactions;206
4.3.3.1.3.1;Social Interactions;206
4.3.3.1.3.2;Technological Interactions;207
4.3.3.1.3.3;Socio-technical Interactions;208
4.3.3.2;6.3.2 Structuring;208
4.3.4;6.4 Step 3: Concept Formalisation;209
4.3.5;6.5 Step 4: Model Formalisation;211
4.3.5.1;6.5.1 Social Structure;211
4.3.5.2;6.5.2 Model Narrative and Pseudo Code;212
4.3.6;6.6 Step 5: Software Implementation;214
4.3.7;6.7 Step 6: Model Veri?cation;215
4.3.8;6.8 Step 7: Experimentation;215
4.3.9;6.9 Step 8: Data Analysis;216
4.3.10;6.10 Step 9: Model Validation;218
4.3.11;6.11 Step 10: Model Use;219
4.3.12;6.12 Conclusions;219
4.3.13;References;220
4.4;Chapter 7: An Agent-Based Model of CO2 Policies and Electricity Generation;222
4.4.1;7.1 Introduction;222
4.4.2;7.2 Step 1: Problem Formulation and Actor Identi?cation;223
4.4.3;7.3 Step 2: System Identi?cation and Decomposition;225
4.4.4;7.4 Step 3: Concept Formalisation;227
4.4.5;7.5 Step 4: Model Formalisation;227
4.4.5.1;7.5.1 Model Narrative;228
4.4.5.2;7.5.2 Investment;229
4.4.5.3;7.5.3 Bidding on Markets;229
4.4.6;7.6 Step 5: Software Implementation;231
4.4.7;7.7 Step 6: Model Veri?cation;232
4.4.7.1;7.7.1 Preliminary Simulations;232
4.4.7.2;7.7.2 Extreme-Condition Tests and Discussion;233
4.4.7.3;7.7.3 Agent Behaviour Tests;233
4.4.7.4;7.7.4 Repetitions;234
4.4.8;7.8 Step 7: Experimentation;234
4.4.9;7.9 Step 8: Data Analysis;235
4.4.10;7.10 Step 9: Model Validation;236
4.4.11;7.11 Step 10: Model Use;236
4.4.11.1;7.11.1 Emergent Insights from Iterations and Discussions;237
4.4.11.2;7.11.2 Serious Game;237
4.4.12;7.12 Conclusions;238
4.4.13;References;239
4.5;Chapter 8: An Agent-Based Model of a Mobile Phone Production, Consumption and Recycling Network;241
4.5.1;8.1 Introduction;241
4.5.2;8.2 Step 1: Problem Formulation and Actor Identi?cation;243
4.5.3;8.3 Step 2: System Identi?cation and Decomposition;243
4.5.4;8.4 Step 3: Concept Formalisation;246
4.5.5;8.5 Step 4: Model Formalisation;248
4.5.5.1;8.5.1 Create Contracts;248
4.5.5.2;8.5.2 Purchase;249
4.5.5.3;8.5.3 Process;249
4.5.5.4;8.5.4 Invest;251
4.5.6;8.6 Step 5: Software Implementation;251
4.5.7;8.7 Step 6: Model Veri?cation;251
4.5.8;8.8 Step 7: Experimentation;253
4.5.9;8.9 Step 8: Data Analysis;255
4.5.9.1;8.9.1 Default Case;255
4.5.9.2;8.9.2 Sweep 1;256
4.5.9.3;8.9.3 Sweep 2;257
4.5.9.4;8.9.4 Sweep 3;259
4.5.10;8.10 Step 9: Model Validation;259
4.5.11;8.11 Step 10: Model Use;260
4.5.12;8.12 Conclusions;261
4.5.13;References;262
4.6;Chapter 9: Next Steps in Modelling Socio-technical Systems: Towards Collaborative Modelling;264
4.6.1;9.1 Complications of Modelling Socio-technical Systems;264
4.6.1.1;9.1.1 Agent-Based Model as Software;265
4.6.2;9.2 Applying Semantic Web Technologies and Methods for Modelling;266
4.6.2.1;9.2.1 Semantic Web Technologies;266
4.6.2.2;9.2.2 Using SPARQL to Extract Structured Data;268
4.6.2.3;9.2.3 Using SPARQL Within Simulations;269
4.6.2.3.1;9.2.3.1 SPARQL for Agent Intelligence;270
4.6.2.3.2;9.2.3.2 SPARQL for Simulation Debugging;271
4.6.2.3.3;9.2.3.3 Disadvantages;272
4.6.2.4;9.2.4 Implementations by Other Researchers;272
4.6.3;9.3 Case Study: Mobile Phone Recycling Networks;272
4.6.4;9.4 Future Work: Enabling Collaboration Between Modellers;276
4.6.4.1;9.4.1 Limitations of Using a Single Ontology for Modelling;276
4.6.4.2;9.4.2 Enabling Multiple System Views;277
4.6.4.3;9.4.3 Integrating Multiple Ontologies Together for Simulations;278
4.6.4.4;9.4.4 Simple Example of Integrating Multiple Ontologies;278
4.6.5;9.5 Conclusion;281
4.6.6;References;281
5;Index;283



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.