E-Book, Englisch, 508 Seiten
Das Microbial Fuel Cell
1. Auflage 2018
ISBN: 978-3-319-66793-5
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
A Bioelectrochemical System that Converts Waste to Watts
E-Book, Englisch, 508 Seiten
ISBN: 978-3-319-66793-5
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book represents a novel attempt to describe microbial fuel cells (MFCs) as a renewable energy source derived from organic wastes. Bioelectricity is usually produced through MFCs in oxygen-deficient environments, where a series of microorganisms convert the complex wastes into electrons via liquefaction through a cascade of enzymes in a bioelectrochemical process. The book provides a detailed description of MFC technologies and their applications, along with the theories underlying the electron transfer mechanisms, the biochemistry and the microbiology involved, and the material characteristics of the anode, cathode and separator. It is intended for a broad audience, mainly undergraduates, postgraduates, energy researchers, scientists working in industry and at research organizations, energy specialists, policymakers, and anyone else interested in the latest developments concerning MFCs.
Debabrata Das, Ph.D. (IIT-Delhi), FIAHE, FNAE, FBRS, FAScT, FIE(I), is a senior professor and former MNRE Renewable Energy Chair Professor at the Indian Institute of Technology Kharagpur, India. He has made significant contributions to bioenergy production processes by applying fermentation technology. His primary areas of research are gaseous fuel production from organic wastes; CO2 sequestration, biodiesel production from microalgae; and electricity generation from microbial fuel cells. He has authored more than 140 research publications in peer-reviewed journals, has written two textbooks and one reference book, and has contributed more than 23 book chapters. He has been awarded the IAHE Akira Mitsue award and Malaviya Memorial award for senior faculty for his contributions to hydrogen research. He is Editor-in-Chief of the American Journal of Biomass and Bioenergy and serves on the editorial boards of several international journals.
Autoren/Hrsg.
Weitere Infos & Material
1;Foreword;6
2;Preface;8
3;Contents;10
4;Acronyms;13
5;Chapter 1: Introduction;18
5.1;1.1 Background;18
5.2;1.2 Basic Principles of Microbial Fuel Cell (MFC);19
5.3;1.3 Components of MFC;21
5.3.1;1.3.1 Anode Materials;21
5.3.2;1.3.2 Types of Separators/Membranes;22
5.3.3;1.3.3 Cathode Materials;24
5.4;1.4 MFC Architecture;24
5.5;1.5 MFC Performance Indicators;25
5.6;1.6 Modelling of Reaction and Transport Processes in MFCs;26
5.7;1.7 Applications of MFCs;26
5.7.1;1.7.1 Bioremediation and Wastewater Treatment;27
5.7.2;1.7.2 Removal and Recovery of Heavy Metals;28
5.7.3;1.7.3 Constructed Wasteland Management;28
5.7.4;1.7.4 Water Desalination;29
5.7.5;1.7.5 Biophotovoltaics;29
5.7.6;1.7.6 Biosensors;30
5.7.7;1.7.7 MFC as Alternate Power Tool;30
5.7.8;1.7.8 Biochemical Production via Microbial Electrosynthesis;31
5.8;1.8 Scaling Up of MFC;31
5.9;1.9 Challenges in MFC and Future Scope;33
5.10;1.10 Conclusion;33
5.11;References;34
6;Chapter 2: Principles of Microbial Fuel Cell for the Power Generation;37
6.1;2.1 Introduction;37
6.1.1;2.1.1 Fuel Cell and Brief Development of MFC;38
6.2;2.2 Basic Principle of MFC;39
6.2.1;2.2.1 Advantages of MFC over Other Bioenergy Processes;39
6.3;2.3 Power Generation and Evaluation of MFC Performance;40
6.3.1;2.3.1 Classifications of MFCs;42
6.3.2;2.3.2 Potential Losses in MFC;44
6.3.3;2.3.3 Factors Affecting the Performance of MFC;45
6.3.4;2.3.4 Performance Evaluation for MFC;45
6.3.5;2.3.5 Coulombic Efficiency and Energy Efficiency;46
6.4;2.4 Microbes as Catalyst in MFC and Their Various Mode of Exo-cellular Electron Transfer to Electrode;46
6.4.1;2.4.1 Electron Transfer by C-type Cytochromes;47
6.4.2;2.4.2 Microbial Nanowire;50
6.4.3;2.4.3 Electron Shuttles or Mediators;51
6.5;2.5 MFC for Wastewater Treatment;52
6.6;2.6 Other Applications of MFC;52
6.6.1;2.6.1 MFC as Toxic Sensor and BOD Biosensor;53
6.6.2;2.6.2 Preparation of Metal Nanoparticles;54
6.6.3;2.6.3 Other Bioelectrochemical System Adapted from MFC;54
6.7;2.7 Conclusion;55
6.8;References;55
7;Chapter 3: Characteristics of Microbes Involved in Microbial Fuel Cell;58
7.1;3.1 Introduction;58
7.2;3.2 Electrocigens - Nature and Source;59
7.2.1;3.2.1 Natural Sources for EAB;61
7.2.2;3.2.2 Artificial Sources for EAB;62
7.3;3.3 Growth Conditions of EAB;63
7.3.1;3.3.1 pH;63
7.3.2;3.3.2 Temperature;65
7.3.3;3.3.3 Substrate;66
7.3.4;3.3.4 Electrode Material and Membranes;66
7.4;3.4 Bioelectrogenesis and Mechanisms of Exocellular Electron Transfer (EET);67
7.4.1;3.4.1 Mediated Electron Transfer (MET);69
7.4.2;3.4.2 Direct Electron Transfer (DET);69
7.5;3.5 Factors Affecting EAB Performance in MFC;70
7.5.1;3.5.1 Mass Transfer Limitations;70
7.5.2;3.5.2 Bacterial Metabolism Losses;70
7.5.3;3.5.3 Activation Losses;71
7.5.4;3.5.4 Electron-Quenching Reactions;71
7.6;3.6 Strategies for Studying EAB;71
7.6.1;3.6.1 Microbiological Methods;71
7.6.2;3.6.2 Molecular Methods;72
7.6.3;3.6.3 Electrochemical Methods;72
7.7;3.7 Microbial Composition of Biocathode;73
7.8;3.8 Challenges and Future Prospects;73
7.9;3.9 Conclusion;74
7.10;References;74
8;Chapter 4: Microbial Ecology of Anodic Biofilms: From Species Selection to Microbial Interactions;78
8.1;4.1 Introduction to Electroactive Biofilms;78
8.2;4.2 Breakdown of Fermentation Mix End Products;79
8.2.1;4.2.1 Acetate;79
8.2.2;4.2.2 Formate;82
8.2.3;4.2.3 Lactate;82
8.2.4;4.2.4 Propionate;83
8.2.5;4.2.5 Butyrate;85
8.2.6;4.2.6 Ethanol;85
8.3;4.3 Breakdown of Glucose;86
8.3.1;4.3.1 Direct Conversion of Glucose to Current;87
8.3.2;4.3.2 Glucose Fermentation to Mixed End Products;89
8.3.2.1;4.3.2.1 Glucose to Acetate and Hydrogen;89
8.3.2.2;4.3.2.2 Glucose to Lactate;89
8.3.2.3;4.3.2.3 Glucose to Propionate;90
8.3.2.4;4.3.2.4 Glucose to Succinate, Acetate and Formate;90
8.3.2.5;4.3.2.5 Glucose to Butyrate;90
8.3.2.6;4.3.2.6 Glucose to Ethanol;90
8.3.2.7;4.3.2.7 Pyruvate to Mixed End Products;91
8.3.2.8;4.3.2.8 Lactate to Mixed End Products;91
8.3.3;4.3.3 Mixed End Products to Current;92
8.4;4.4 Microbial Communities for Wastewater Substrates Degradation;93
8.5;4.5 Conclusion;94
8.6;References;95
9;Chapter 5: Anodic Electron Transfer Mechanism in Bioelectrochemical Systems;101
9.1;5.1 Introduction;101
9.2;5.2 Electron Transfer Mechanisms;103
9.2.1;5.2.1 Direct Electron Transfer;103
9.2.2;5.2.2 Mediated Electron Transfer;104
9.2.2.1;5.2.2.1 MET via Exogenous Mediators;105
9.2.2.2;5.2.2.2 MET via Endogenous Mediators;106
9.3;5.3 Interspecies Electron Transfer Through Conductive Minerals;107
9.4;5.4 Factors Influencing Electron Transfer Mechanism;108
9.4.1;5.4.1 Biofilm Integrity;108
9.4.2;5.4.2 Electrodes Structure;109
9.4.3;5.4.3 Catalyzed Electrodes;110
9.4.4;5.4.4 Electrolyte and Electron Carriers;110
9.5;5.5 Conclusions;111
9.6;References;111
10;Chapter 6: Development of Suitable Anode Materials for Microbial Fuel Cells;115
10.1;6.1 Introduction;115
10.2;6.2 Essential Requirements of Anode Materials;115
10.2.1;6.2.1 Surface Area and Porosity;115
10.2.2;6.2.2 Fouling and Poisoning;116
10.2.3;6.2.3 Electronic Conductivity;116
10.2.4;6.2.4 Biocompatibility;117
10.2.5;6.2.5 Stability and Long Durability;117
10.2.6;6.2.6 Electrode Cost and Availability;117
10.3;6.3 Anode Materials Employed in MFCs;118
10.3.1;6.3.1 Carbonaceous Electrodes;118
10.3.1.1;6.3.1.1 Types of Carbonaceous Anode;118
10.3.1.2;6.3.1.2 Plane or 2D Carbonaceous Anodes;119
10.3.1.3;6.3.1.3 3D Carbonaceous Anodes;121
10.3.2;6.3.2 Non-carbonaceous Electrodes;123
10.3.2.1;6.3.2.1 Noble Metal Materials;123
10.3.2.2;6.3.2.2 Non-noble Metal Materials;124
10.3.2.3;6.3.2.3 3D and Composites Metal-Based Electrodes;124
10.4;6.4 Surface Treatment;125
10.4.1;6.4.1 Heat Treatment;125
10.4.1.1;6.4.1.1 Treatment of Anode Materials;127
10.4.1.2;6.4.1.2 Chemical Treatment;127
10.4.1.2.1;Ammonia/Acid Treatment;127
10.4.1.2.2;Electrochemical Oxidation;128
10.4.2;6.4.2 Advanced Nanostructure Modification of Anodes;129
10.4.2.1;6.4.2.1 Modification of Anodes by Carbon Nanotubes (CNT) and Its Composites;129
10.4.2.2;6.4.2.2 Modification of Anodes by Graphene and Its Composites;131
10.4.2.3;6.4.2.3 Modification of Anodes by Conductive Polymer and Its Composites;132
10.5;6.5 Challenge and Outlook;133
10.6;6.6 Conclusion;133
10.7;References;134
11;Chapter 7: Performances of Separator and Membraneless Microbial Fuel Cell;139
11.1;7.1 Introduction;139
11.2;7.2 Parameters Used in MFC Performance;141
11.2.1;7.2.1 Proton Transport Mechanism in a PEM;143
11.3;7.3 Advantages and Disadvantages of Separator and Separatorless MFC;143
11.4;7.4 Type of Separators and Their Performance in MFC;144
11.4.1;7.4.1 Ion-Exchange Membranes;144
11.4.2;7.4.2 Salt Bridge;145
11.4.3;7.4.3 Porous Membrane;146
11.4.4;7.4.4 Polymer Electrolyte Membrane and Composite Membranes;147
11.5;7.5 Separatorless MFC;149
11.6;7.6 Current Status;150
11.7;7.7 Conclusion;151
11.8;References;151
12;Chapter 8: Role of Cathode Catalyst in Microbial Fuel Cell;155
12.1;8.1 Introduction;155
12.2;8.2 Non-oxygen Terminal Electron Acceptors;157
12.3;8.3 Oxygen Reduction Reaction (ORR) at Cathode: Fundamentals;158
12.3.1;8.3.1 Evaluation of ORR Catalysts: Figure of Merits;160
12.4;8.4 Cathode Catalysts;162
12.4.1;8.4.1 Pt and Pt-based ORR Catalysts;163
12.4.2;8.4.2 Pt-free ORR Catalysts in MFC;165
12.4.2.1;8.4.2.1 Metals and Multimetallics;165
12.4.2.2;8.4.2.2 Metal Oxide-Based ORR Catalysts;166
12.4.2.3;8.4.2.3 Metal Macrocycles-Based ORR Catalysts;167
12.4.2.4;8.4.2.4 Carbon-Based ORR Catalysts;169
12.4.2.5;8.4.2.5 Metal Carbides as ORR Catalysts;170
12.4.2.6;8.4.2.6 Electronically Conductive Polymer Catalysts;171
12.4.2.7;8.4.2.7 Biocatalysts for Cathodic Reduction;172
12.5;8.5 Conclusions;173
12.6;References;173
13;Chapter 9: Role of Biocathodes in Bioelectrochemical Systems;178
13.1;9.1 Introduction;178
13.2;9.2 BES Technology Utilizing Biocathodes;179
13.3;9.3 Electron Acceptors and Microorganisms;180
13.4;9.4 Biocathode Materials;181
13.4.1;9.4.1 General Material Characteristics;182
13.4.1.1;9.4.1.1 Biocompatibility and Surface Roughness;182
13.4.1.2;9.4.1.2 Surface Area and Porosity;182
13.4.1.3;9.4.1.3 Conductivity;182
13.4.1.4;9.4.1.4 Hydrophobicity;183
13.5;9.5 Biofilm Formation;183
13.5.1;9.5.1 Biofilm Architecture;183
13.6;9.6 Electron Transfer;184
13.6.1;9.6.1 Aerobic and Anaerobic Bacterial Electron Transport Chains;184
13.6.2;9.6.2 Electrode-Microbe Electron Transfer Mechanisms;185
13.6.2.1;9.6.2.1 Direct Electron Transfer (DET);185
13.6.2.2;9.6.2.2 Indirect Electron Transfer (IDET);186
13.6.2.3;9.6.2.3 Proteins Affiliated with Extracellular Electron Transfer;186
13.7;9.7 Microbial Characterization Methods;187
13.7.1;9.7.1 Biofilm Characterization;187
13.7.2;9.7.2 Microorganism Detection;187
13.7.3;9.7.3 Composition and Characterization of Microbial Communities;188
13.7.4;9.7.4 Analysis of Functional Genes and Activity of Microbes;189
13.7.5;9.7.5 Polyphasic Taxonomical Approach;189
13.7.6;9.7.6 Microscopic Methods;190
13.7.7;9.7.7 Spectroscopic Methods;191
13.7.8;9.7.8 Nuclear Magnetic Resonance Imaging;191
13.7.9;9.7.9 Flow Cytometry;191
13.8;9.8 Conclusions;192
13.9;References;192
14;Chapter 10: Physicochemical Parameters Governing Microbial Fuel Cell Performance;201
14.1;10.1 Introduction;201
14.2;10.2 Anode Electrode for MFC;201
14.2.1;10.2.1 Plain Anode Materials;201
14.2.2;10.2.2 Surface Modifications of Anode Electrode;203
14.3;10.3 Cathode Electrode;204
14.3.1;10.3.1 Cathode Electrode with Catalysts;204
14.3.2;10.3.2 Cathode Electrode Without Catalysts;205
14.4;10.4 Membranes/Separators Tested in MFC;205
14.4.1;10.4.1 Ion Exchange Membrane;205
14.4.2;10.4.2 Size Selective Separators;206
14.5;10.5 Reactor Configurations;207
14.6;10.6 Effect of Temperature on MFC Performance;209
14.7;10.7 Electrolyte pH in Governing MFC Performances;209
14.8;10.8 Electrolyte Conductivity;211
14.9;10.9 Oxidants in an MFC Cathode;212
14.10;10.10 Substrates (Fuels) in the MFC Anode Chamber;215
14.11;10.11 Conclusions;216
14.12;References;216
15;Chapter 11: Reactor Design for Bioelectrochemical Systems;221
15.1;11.1 Introduction;221
15.2;11.2 Components of BES;222
15.2.1;11.2.1 Anode Materials;222
15.2.1.1;11.2.1.1 Nanostructured Carbon-Based Electrodes;222
15.2.1.2;11.2.1.2 Carbon Nanotubes;224
15.2.1.3;11.2.1.3 Graphene;225
15.2.1.4;11.2.1.4 Conductive Polymers;226
15.2.1.5;11.2.1.5 Metal Nanoparticles;227
15.2.2;11.2.2 Cathode Materials;229
15.2.2.1;11.2.2.1 Chemical Cathodes;229
15.2.2.2;11.2.2.2 Biocathodes;230
15.2.3;11.2.3 Membranes;230
15.2.3.1;11.2.3.1 Cation Exchange Membranes;231
15.2.3.2;11.2.3.2 Anion Exchange Membranes;231
15.3;11.3 Bioelectrochemical Cell Designs;231
15.3.1;11.3.1 Dual Chamber;231
15.3.2;11.3.2 Single Chamber;233
15.3.3;11.3.3 Stack Designs;233
15.4;11.4 Future Perspectives and Conclusions;233
15.5;References;236
16;Chapter 12: Microfluidic Microbial Fuel Cell: On-chip Automated and Robust Method to Generate Energy;240
16.1;12.1 Introduction;240
16.2;12.2 Microfluidics - Basic Principles Pertaining to MFC;241
16.2.1;12.2.1 Summary of Principles;241
16.2.2;12.2.2 Amenability to Integration;242
16.2.3;12.2.3 Principle to Develop Membraneless MMFC;243
16.3;12.3 Membraned Microfluidic MFC (M+MMFC);243
16.3.1;12.3.1 Diverse Membraned Microfluidic MFC (M+MMFC);243
16.3.1.1;12.3.1.1 Conventional Photolithography (Chen et al. 2011; Dvila et al. 2011; Mu et al. 2006);244
16.3.1.2;12.3.1.2 Soft Lithography (Choi and Chae 2013; Li et al. 2011; Qian et al. 2009, 2011; Siu and Chiao 2008);245
16.3.1.3;12.3.1.3 Paper-Based Devices (Choi et al. 2015; Fraiwan and Choi 2014; Fraiwan et al. 2013; Hashemi et al. 2016);246
16.3.1.4;12.3.1.4 Laser Micromachining;248
16.3.2;12.3.2 Challenges in Conventional Microfluidic MFCs (M+MMFC);248
16.3.2.1;12.3.2.1 High Internal Resistance;248
16.3.2.2;12.3.2.2 Low Energy Density Output;248
16.3.2.3;12.3.2.3 Oxygen Penetration;248
16.4;12.4 Membraneless Microfluidic MFC (M-MMFC);249
16.4.1;12.4.1 Key Membraneless Microfluidic MFC (M-MMFC) and Their Comparison;250
16.4.2;12.4.2 Salient Features of M-MMFC;252
16.4.2.1;12.4.2.1 Membraneless;252
16.4.2.2;12.4.2.2 Higher Output Power Density/Current Density;252
16.4.2.3;12.4.2.3 Relatively Shorter Response Time;252
16.4.3;12.4.3 Challenges in M-MMFC;253
16.4.3.1;12.4.3.1 Ensuring the Required Flow Environment;253
16.4.3.2;12.4.3.2 Smart Integration of Various Components of M-MMFC;253
16.5;12.5 Future Opportunities;253
16.5.1;12.5.1 Electricity Generation;253
16.5.2;12.5.2 In Vivo Operation;253
16.5.3;12.5.3 Input Power Requirement;254
16.5.4;12.5.4 Other Applications;254
16.6;12.6 Conclusion;254
16.7;References;255
17;Chapter 13: Diagnostic Tools for the Assessment of MFC;259
17.1;13.1 Introduction;259
17.2;13.2 Reporting Data Using Typical Performance Indicators;260
17.2.1;13.2.1 Open Circuit Voltage (OCV);260
17.2.2;13.2.2 Half-Cell Potential;260
17.2.3;13.2.3 Current Density;260
17.2.4;13.2.4 Power Density;261
17.2.5;13.2.5 Columbic Efficiency;261
17.2.5.1;13.2.5.1 Batch or Fed-Batch Mode of Operation;262
17.2.5.2;13.2.5.2 Continuous Mode of Operation;262
17.2.6;13.2.6 Energy Efficiency;262
17.3;13.3 Performance Evaluation via Electro-chemical Tools;263
17.3.1;13.3.1 Polarization;263
17.3.2;13.3.2 Current Interruption (CI);264
17.3.3;13.3.3 Voltammetry Techniques;265
17.3.3.1;13.3.3.1 Linear Sweep Voltammetry (LSV);266
17.3.3.2;13.3.3.2 Cyclic Voltammetry (CV);267
17.3.3.3;13.3.3.3 Differential Pulse Voltammetry (DPV);269
17.3.3.4;13.3.3.4 Chronoamperometry (CA);269
17.3.4;13.3.4 Butler-Volmer Analysis and Tafel Plots;271
17.3.5;13.3.5 Electrochemical Impedance Spectroscopy (EIS) Analysis;271
17.4;13.4 Material Characterization Methods;272
17.4.1;13.4.1 Scanning Electron Microscopy (SEM);272
17.4.2;13.4.2 Transmission Electron Microscopy (TEM);273
17.4.3;13.4.3 X-Ray Diffraction (XRD);274
17.4.4;13.4.4 BET Surface Area Measurements;274
17.4.5;13.4.5 Other Methods;274
17.5;13.5 Techniques for Microbial Community Analysis;275
17.5.1;13.5.1 DGGE;275
17.5.2;13.5.2 ARDRA;275
17.5.3;13.5.3 Pyrosequencing;276
17.5.4;13.5.4 Other Molecular Techniques;276
17.6;13.6 Waste and Wastewater Analysis;277
17.7;13.7 Conclusions;277
17.8;References;277
18;Chapter 14: Modelling of Reaction and Transport in Microbial Fuel Cells;279
18.1;14.1 Introduction;279
18.2;14.2 Principle of an MFC;280
18.3;14.3 Classification of the Models;281
18.4;14.4 Overall Models;282
18.5;14.5 Models Pertaining to Anode-Bacterial Interactions;283
18.5.1;14.5.1 Background Current and Modelling of Endogenous Metabolism;285
18.6;14.6 Models Pertaining to Membrane/Separator;289
18.7;14.7 Models Pertaining to Oxygen Reduction Reaction (ORR) Kinetics at Cathode;291
18.8;14.8 Conclusion;292
18.9;References;293
19;Chapter 15: Bioremediation and Power Generation from Organic Wastes Using Microbial Fuel Cell;294
19.1;15.1 Introduction;294
19.2;15.2 Basic Principles of Power Generation from Organic Wastes in MFC;295
19.3;15.3 Electrode Mechanisms;296
19.3.1;15.3.1 Reactions at Anode;296
19.3.2;15.3.2 Reactions at Cathode;297
19.4;15.4 MFC Configurations;298
19.5;15.5 Microbial Remediation Using MFC-Based Technologies;299
19.5.1;15.5.1 MFC-Assisted Biodegradation of Azo Dyes;300
19.5.2;15.5.2 Bioremediation of Hydrocarbons and Their Derivatives;303
19.5.3;15.5.3 Removal of Heavy Metals;304
19.5.4;15.5.4 Other Pollutants;305
19.6;15.6 Organic Wastes and Wastewater as Potential Feedstocks for MFCs;306
19.6.1;15.6.1 Solid Residual Wastes;306
19.6.2;15.6.2 Organic Wastewater;308
19.7;15.7 Challenges;310
19.8;15.8 Conclusions and Future Prospects;311
19.9;References;311
20;Chapter 16: Removal and Recovery of Metals by Using Bio-electrochemical System;316
20.1;16.1 Introduction;316
20.2;16.2 Principles of Bioelectrochemical Systems (BESs);316
20.3;16.3 Metals in the Environment;318
20.4;16.4 Bio-electrochemical Metal Removal and Recovery;319
20.4.1;16.4.1 Arsenic;319
20.4.2;16.4.2 Cadmium (Cd);319
20.4.3;16.4.3 Chromium (Cr);321
20.4.4;16.4.4 Cobalt (Co);324
20.4.5;16.4.5 Copper (Cu);324
20.4.6;16.4.6 Mercury (Hg);326
20.4.7;16.4.7 Gold (Au);328
20.4.8;16.4.8 Nickel (Ni);328
20.4.9;16.4.9 Selenium (Se);332
20.4.10;16.4.10 Silver (Ag);333
20.4.11;16.4.11 Vanadium (V);335
20.5;16.5 Conclusions;338
20.6;References;338
21;Chapter 17: Sediment Microbial Fuel Cell and Constructed Wetland Assisted with It: Challenges and Future Prospects;343
21.1;17.1 Introduction;343
21.2;17.2 Fundamentals of SMFCs and CW-MFCs;345
21.3;17.3 Factors Affecting the Performance of SMFCs and CW-MFCs;346
21.3.1;17.3.1 Electrode Materials;346
21.3.2;17.3.2 Electrode Spacing and External Resistance;348
21.3.3;17.3.3 Effect of Catalysts and Mediators;348
21.3.4;17.3.4 Effect of pH, Dissolved Oxygen and Temperature;350
21.3.5;17.3.5 Plants;351
21.3.6;17.3.6 Operating Conditions;353
21.4;17.4 Electricity Generation as a Function of Wastewater Treatment;353
21.5;17.5 Scaling Up of SMFCs and Operating Wireless Sensors;354
21.6;17.6 Conclusion;355
21.7;References;356
22;Chapter 18: Fundamentals of Microbial Desalination Cell;361
22.1;18.1 Introduction;361
22.2;18.2 Ion Exchange Membrane (IEM) Based MDC;362
22.2.1;18.2.1 Reactor Design;362
22.2.2;18.2.2 Junction Potential and Water Transport;366
22.3;18.3 MDC Performance;368
22.3.1;18.3.1 Salinity Removal;368
22.3.2;18.3.2 Maximum Current vs. Maximum Power;368
22.3.3;18.3.3 Current Efficiency;369
22.3.4;18.3.4 Coulombic Efficiency;369
22.3.5;18.3.5 COD Removal;370
22.3.6;18.3.6 Effects of Electrolyte pH;370
22.3.7;18.3.7 Salinity Effects on Exoelectrogenic Bacteria;371
22.3.8;18.3.8 Cathode Reactions: O2 Reduction vs. H2 Evolution;371
22.4;18.4 Types of Microbial Desalination Cells (MDCs);372
22.4.1;18.4.1 Osmotic MDCs;372
22.4.2;18.4.2 Bipolar Membrane MDCs;372
22.4.3;18.4.3 Capacitive Microbial Desalination Cell;374
22.5;18.5 Challenges and Perspective;375
22.5.1;18.5.1 Control of pH;375
22.5.2;18.5.2 Improving Performance of Stacked MDCs;375
22.5.3;18.5.3 IEM Integrity Under High Microbial Activity;376
22.5.4;18.5.4 Water Safety;377
22.6;18.6 Conclusion;377
22.7;References;377
23;Chapter 19: Biophotovoltaics: Conversion of Light Energy to Bioelectricity Through Photosynthetic Microbial Fuel Cell Technolo...;380
23.1;19.1 Introduction;380
23.2;19.2 Mechanism of Development of Potential Gradient in Biological System;381
23.3;19.3 Light Harvesting Technologies for Bioelectricity Generation;382
23.3.1;19.3.1 Chemical Based;382
23.3.2;19.3.2 Biological Based;383
23.3.2.1;19.3.2.1 Anoxygenic Photosynthesis at Anode;383
23.3.2.2;19.3.2.2 Photosynthetic at Anode with Artificial Mediators Biological Photovoltaics;383
23.3.2.3;19.3.2.3 Oxygenic Photosynthesis at Anode;384
23.3.2.4;19.3.2.4 Oxygenic Photosynthesis at Cathode;386
23.3.2.5;19.3.2.5 Plant MFC (Synergism Between Mixed Heterotrophic Bacteria and Plant);387
23.3.3;19.3.3 Ecological Engineered System (EES): MFC to Wetland System;387
23.3.4;19.3.4 Light Harvesting Proteins for Photovoltaic and Photoelectrochemical Devices;388
23.4;19.4 Applications;389
23.4.1;19.4.1 Wastewater Treatment;390
23.4.2;19.4.2 Powering Underwater Monitoring Devices;390
23.4.3;19.4.3 BOD Sensing;390
23.4.4;19.4.4 Biohydrogen Production in PhFC;391
23.5;19.5 Conclusion;391
23.6;References;391
24;Chapter 20: Application of Microbial Fuel Cell as a Biosensor;395
24.1;20.1 Introduction;395
24.2;20.2 Microbial Biosensors;395
24.3;20.3 Principle of MFC as a Biosensor;397
24.4;20.4 Advantages of MFC as a Sensor;399
24.5;20.5 BOD and Its Importance;399
24.6;20.6 Methods of Assessing BOD;400
24.7;20.7 Application of MFC as a BOD Sensor;400
24.7.1;20.7.1 MFC as a BOD Biosensor-State of Art;401
24.7.2;20.7.2 Challenges of MFC-Based BOD Biosensors;404
24.8;20.8 Upcoming Applications of MFC in the Field of Sensing;405
24.8.1;20.8.1 Screening of Electroactive Microbes;405
24.8.2;20.8.2 Toxicity Sensing;406
24.8.3;20.8.3 VFA Sensing;406
24.9;20.9 Conclusion and Future Perspectives;406
24.10;References;407
25;Chapter 21: Microbial Fuel Cell as Alternate Power Tool: Potential and Challenges;409
25.1;21.1 Introduction;409
25.2;21.2 MFCs as Alternative Power Sources;412
25.2.1;21.2.1 MFCs Powering Remote Sensors;412
25.2.2;21.2.2 MFCs for Robotics;414
25.2.3;21.2.3 Paper-Based MFC Devices;416
25.2.4;21.2.4 Pee Power Urinal Field Trials;418
25.2.5;21.2.5 MFCs Powering Low Power Density Devices;419
25.3;21.3 Factors Constraining Energy Output of MFCs;419
25.4;21.4 Energy Harvest in MFC;421
25.5;21.5 Conclusions;422
25.6;References;423
26;Chapter 22: Microbially Mediated Electrosynthesis Processes;426
26.1;22.1 Microbial Electrosynthesis for Bioelectrochemical Processes;426
26.2;22.2 Factors Affecting the Performance of BES;428
26.2.1;22.2.1 Electrochemical Parameters;429
26.2.1.1;22.2.1.1 Activation Polarization;429
26.2.1.2;22.2.1.2 Ohmic Polarization;429
26.2.1.3;22.2.1.3 Voltage Reversal;430
26.2.1.4;22.2.1.4 Applied Potential;430
26.2.2;22.2.2 Physicochemical Parameters;430
26.2.2.1;22.2.2.1 Substrate Availability;431
26.2.2.2;22.2.2.2 Salinity;431
26.2.2.3;22.2.2.3 Concentration Polarization;431
26.2.3;22.2.3 Operational Parameters;432
26.2.3.1;22.2.3.1 Mediators;432
26.2.3.2;22.2.3.2 pH Splitting;433
26.2.3.3;22.2.3.3 Other Operational Consideration;433
26.2.4;22.2.4 Engineering Parameters;434
26.2.4.1;22.2.4.1 Reactor Configuration;434
26.2.4.2;22.2.4.2 Internal Currents;435
26.2.4.3;22.2.4.3 Membranes;435
26.2.4.4;22.2.4.4 State-of-the-Art Electrode Materials;436
26.2.4.5;22.2.4.5 Tubings and Compartments;436
26.2.5;22.2.5 Microbial Parameters;437
26.2.6;22.2.6 Economic Parameters;437
26.3;22.3 Biocathode Development;438
26.4;22.4 Advantages and Application of Bioelectrochemical Conversions;440
26.5;22.5 Conclusions;442
26.6;References;443
27;Chapter 23: Recent Progress Towards Scaling Up of MFCs;448
27.1;23.1 Genesis and Advancement in MFC Research;448
27.2;23.2 Bottleneck in MFC Research;450
27.3;23.3 Scaling Up of MFC;451
27.4;23.4 Hybrid Approach of MFC for Wastewater Treatment;453
27.5;23.5 Life Cycle Assessment of MFC;455
27.6;23.6 Current Challenges and Potential Opportunities;456
27.7;23.7 MFC: Outlook and Future Perspectives;457
27.8;23.8 Conclusion;458
27.9;References;459
28;Chapter 24: Scaling Up of MFCs: Challenges and Case Studies;463
28.1;24.1 Introduction;463
28.2;24.2 Limitations in Large Scale Applicationof MFCs;464
28.3;24.3 Electrochemical Limitations: Design;466
28.3.1;24.3.1 Electrodes;466
28.3.2;24.3.2 Reactor Vessel Design;466
28.3.3;24.3.3 Electrical Connectivity;467
28.4;24.4 Operational Limitations;467
28.4.1;24.4.1 Start-Up;467
28.4.2;24.4.2 Electrolyte;468
28.4.2.1;24.4.2.1 Chemical Composition;468
28.4.2.2;24.4.2.2 Substrate Loading;469
28.5;24.5 Economic Limitations;470
28.6;24.6 MFCs Toward Commercial Applications: Case Studies;471
28.6.1;24.6.1 Bioelectro MET;471
28.6.2;24.6.2 Value from Urine;474
28.6.3;24.6.3 EcoBots;475
28.6.4;24.6.4 Pee Power Urinal;476
28.7;24.7 Possible Solutions to Overcomethe Limitations;477
28.7.1;24.7.1 Electrode Spacing and Specific Surface Area;477
28.7.2;24.7.2 Electrolyte Flow Dynamics;478
28.7.3;24.7.3 Minimizing Fabrication Defects;480
28.8;24.8 Conclusions and Future Perspectives;480
28.9;References;481
29;Chapter 25: Challenges in Microbial Fuel Cell and Future Scope;486
29.1;25.1 Introduction;486
29.2;25.2 Metabolic Reactions Intricate in Bioelectricity Generation from Exoelectrogens;487
29.3;25.3 MFC Applications;490
29.4;25.4 Factors Governing MFC Performance;490
29.4.1;25.4.1 Biocatalyst;491
29.4.2;25.4.2 Substrate;491
29.4.3;25.4.3 Substrate/COD Concentration;491
29.4.4;25.4.4 Feed pH;492
29.5;25.5 Bottlenecks of MFC;492
29.5.1;25.5.1 Polarization Losses;492
29.5.2;25.5.2 Activation Losses (AL);493
29.5.3;25.5.3 Concentration Polarization (CP);494
29.5.4;25.5.4 Ohmic Losses (OL);494
29.5.5;25.5.5 Microbial Interaction with the Electrode Surface;495
29.5.6;25.5.6 Choice of Anode Biocatalyst;495
29.5.7;25.5.7 Proton (H+) Mass Transfer;496
29.5.8;25.5.8 O2 Reduction by the Cathode;497
29.5.9;25.5.9 Electron Acceptors Other Than O2;497
29.6;25.6 MFC as a Wastewater Treatment System;497
29.7;25.7 Future Scope;498
29.8;25.8 Conclusion;498
29.9;References;499
30;Index;503




