Desai | A Multiple-Testing Approach to the Multivariate Behrens-Fisher Problem | E-Book | sack.de
E-Book

E-Book, Englisch, 55 Seiten, eBook

Reihe: SpringerBriefs in Statistics

Desai A Multiple-Testing Approach to the Multivariate Behrens-Fisher Problem

with Simulations and Examples in SAS®
1. Auflage 2013
ISBN: 978-1-4614-6443-3
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

with Simulations and Examples in SAS®

E-Book, Englisch, 55 Seiten, eBook

Reihe: SpringerBriefs in Statistics

ISBN: 978-1-4614-6443-3
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



In statistics, the Behrens–Fisher problem is the problem of interval estimation and hypothesis testing concerning the difference between the means of two normally distributed populations when the variances of the two populations are not assumed to be equal, based on two independent samples. In his 1935 paper, Fisher outlined an  approach to the Behrens-Fisher problem.  Since high-speed computers were not available in Fisher’s time, this approach was not implementable and was soon forgotten. Fortunately, now that high-speed computers are available, this approach can easily be implemented using just a desktop or a laptop computer. Furthermore, Fisher’s approach was proposed for univariate samples. But this approach can also be generalized to the multivariate case.  In this monograph, we present the solution to the afore-mentioned multivariate generalization of the Behrens-Fisher problem.  We start out by presenting  a test of multivariate normality, proceed to test(s) of equality of covariance matrices, and end with our solution to the multivariate Behrens-Fisher problem. All methods proposed in this monograph will be include both the randomly-incomplete-data case as well as the complete-data case. Moreover, all methods considered in this monograph will be tested using both simulations and examples.

Desai A Multiple-Testing Approach to the Multivariate Behrens-Fisher Problem jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Introduction.- On Testing for Multivariate Normality.- On Testing Equality of Covariance Matrices.- On Heteroscedastic MANOVA.- References.


Tejas A. Desai is Assistant Professor at The Adani Institute of Infrastructure Management



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.