Buch, Englisch, 417 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 896 g
Interdisciplinary Applied Mathematics
Buch, Englisch, 417 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 896 g
ISBN: 978-3-642-01038-5
Verlag: Springer
Learning spaces offer a rigorous mathematical foundation for practical systems of educational technology. Learning spaces generalize partially ordered sets and are special cases of knowledge spaces. The various structures are investigated from the standpoints of combinatorial properties and stochastic processes.
Leaning spaces have become the essential structures to be used in assessing students' competence of various topics. A practical example is offered by ALEKS, a Web-based, artificially intelligent assessment and learning system in mathematics and other scholarly fields. At the heart of ALEKS is an artificial intelligence engine that assesses each student individually and continously.
The book is of interest to mathematically oriented readers in education, computer science, engineering, and combinatorics at research and graduate levels. Numerous examples and exercises are included, together with an extensive bibliography.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematik Allgemein Diskrete Mathematik, Kombinatorik
- Mathematik | Informatik EDV | Informatik EDV & Informatik Allgemein E-Learning
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Sozialwissenschaften Pädagogik Lehrerausbildung, Unterricht & Didaktik E-Learning, Bildungstechnologie
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
Weitere Infos & Material
Overview and Mathematical Glossary.- Knowledge Structures and Learning Spaces.- Knowledge Spaces.- Well-Graded Families.- Surmise Systems.- Skill Maps, Labels and Filters.- Entailments and the Maximal Mesh.- Galois Connections.- Descriptive and Assessment Languages.- Greedoids, Learning Spaces, and Antimatroids.- Learning Spaces and Media.- Probabilistic Knowledge Structures.- Stochastic Learning Paths.- A Continuous Markov Procedure.- A Markov Chain Procedure.- Building a Knowledge Structure.- Building a Learning Space.- Applications.- Open Problems