E-Book, Englisch, 514 Seiten, eBook
Dong / Ding / Zhang Deep Reinforcement Learning
1. Auflage 2020
ISBN: 978-981-15-4095-0
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
Fundamentals, Research and Applications
E-Book, Englisch, 514 Seiten, eBook
ISBN: 978-981-15-4095-0
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Preface.- Contributors.- Acknowledgements.- Mathematical Notation.- Acronyms.- Introduction.- Part 1: Foundamentals.- Chapter 1: Introduction to Deep Learning.- Chapter 2: Introduction to Reinforcement Learning.- Chapter 3: Taxonomy of Reinforcement Learning Algorithms.- Chapter 4: Deep Q-Networks.- Chapter 5: Policy Gradient.- Chapter 6: Combine Deep Q-Networks with Actor-Critic.- Part II: Research.- Chapter 7: Challenges of Reinforcement Learning.- Chapter 8: Imitation Learning.- Chapter 9: Integrating Learning and Planning.- Chapter 10: Hierarchical Reinforcement Learning.- Chapter 11: Multi-Agent Reinforcement Learning.- Chapter 12: Parallel Computing.- Part III: Applications.- Chapter 13: Learning to Run.- Chapter 14: Robust Image Enhancement.- Chapter 15: AlphaZero.- Chapter 16: Robot Learning in Simulation.- Chapter 17: Arena Platform for Multi-Agent Reinforcement Learning.- Chapter 18: Tricks of Implementation.- Part IV: Summary.- Chapter 19: Algorithm Table.- Chapter 20: Algorithm Cheatsheet.