Drori | The Science of Deep Learning | E-Book | sack.de
E-Book

E-Book, Englisch, 0 Seiten

Drori The Science of Deep Learning


Erscheinungsjahr 2022
ISBN: 978-1-108-88337-5
Verlag: Cambridge University Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 0 Seiten

ISBN: 978-1-108-88337-5
Verlag: Cambridge University Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



The Science of Deep Learning emerged from courses taught by the author that have provided thousands of students with training and experience for their academic studies, and prepared them for careers in deep learning, machine learning, and artificial intelligence in top companies in industry and academia. The book begins by covering the foundations of deep learning, followed by key deep learning architectures. Subsequent parts on generative models and reinforcement learning may be used as part of a deep learning course or as part of a course on each topic. The book includes state-of-the-art topics such as Transformers, graph neural networks, variational autoencoders, and deep reinforcement learning, with a broad range of applications. The appendices provide equations for computing gradients in backpropagation and optimization, and best practices in scientific writing and reviewing. The text presents an up-to-date guide to the field built upon clear visualizations using a unified notation and equations, lowering the barrier to entry for the reader. The accompanying website provides complementary code and hundreds of exercises with solutions.

Drori The Science of Deep Learning jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Preface; Notation; Part I. Foundations: 1. Introduction; 2. Forward and backpropagation; 3. Optimization; 4. Regularization; Part II. Architectures: 5. Convolutional neural networks; 6. Sequence models; 7. Graph neural networks; 8. Transformers; Part III. Generative Models: 9. Generative adversarial networks; 10. Variational autoencoders; Part IV. Reinforcement Learning: 11. Reinforcement learning; 12. Deep reinforcement learning; Part V. Applications: 13. Applications; Appendices; References; Index.


Drori, Iddo
Iddo Drori is a faculty member and associate professor at Boston University, a lecturer at MIT, and adjunct associate professor at Columbia University. He was a visiting associate professor at Cornell University in operations research and information engineering, and research scientist and adjunct professor at NYU Center for Data Science, Courant Institute, and NYU Tandon. He holds a PhD in computer science and was a postdoctoral research fellow at Stanford University in statistics. He also holds an MBA in organizational behavior and entrepreneurship and has a decade of industry research and leadership experience. His main research is in machine learning, AI, and computer vision, with 70 publications and over 5,100 citations, and he has taught over 35 courses in computer science. He has won multiple competitions in computer vision conferences and received multiple best paper awards in machine learning conferences.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.