E-Book, Englisch, 367 Seiten
Du Preez / Sinha Millimeter-Wave Power Amplifiers
1. Auflage 2017
ISBN: 978-3-319-62166-1
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 367 Seiten
Reihe: Signals and Communication Technology
ISBN: 978-3-319-62166-1
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book provides a detailed review of millimeter-wave power amplifiers, discussing design issues and performance limitations commonly encountered in light of the latest research. Power amplifiers, which are able to provide high levels of output power and linearity while being easily integrated with surrounding circuitry, are a crucial component in wireless microwave systems. The book is divided into three parts, the first of which introduces readers to mm-wave wireless systems and power amplifiers. In turn, the second focuses on design principles and EDA concepts, while the third discusses future trends in power amplifier research. The book provides essential information on mm-wave power amplifier theory, as well as the implementation options and technologies involved in their effective design, equipping researchers, circuit designers and practicing engineers to design, model, analyze, test and implement high-performance, spectrally clean and energy-efficient mm-wave systems.
Saurabh Sinha is full professor of Electronics at the University of Johannesburg, South Africa, where he has been Executive Dean of the Faculty of Engineering and Built Environment since 2013. In addition he is the managing editor of the South African Institute of Electrical Engineers (SAIEE) Africa Research Journal.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;9
3;Introduction;14
4;1 Power Amplifiers for Millimeter-Wave Systems;15
4.1;1.1 Overview of Power Amplifier Applications in Millimeter-Wave Bands;15
4.2;1.2 Power Amplifiers in Millimeter-Wave Transmitters;16
4.2.1;1.2.1 Sliding-IF Superheterodyne Transmitter Architecture;17
4.2.2;1.2.2 Direct Conversion Transmitter Architecture;18
4.3;1.3 Fundamental Parameters of Power Amplifiers;20
4.3.1;1.3.1 Gain;20
4.3.1.1;1.3.1.1 Basic Amplifier Gain Relationships;20
4.3.1.2;1.3.1.2 Two-Port Power Gains;22
4.3.1.3;1.3.1.3 Special Case Gain Expressions;25
4.3.1.4;1.3.1.4 Gain Flatness;26
4.3.2;1.3.2 Impedance Matching;26
4.3.2.1;1.3.2.1 Matching Topologies;27
4.3.2.2;1.3.2.2 Constant VSWR Design;28
4.3.2.3;1.3.2.3 Load-Pull Measurements;29
4.3.3;1.3.3 Stability;31
4.3.3.1;1.3.3.1 Conditional and Unconditional Stability;32
4.3.3.2;1.3.3.2 Testing for Unconditional Stability;32
4.3.4;1.3.4 Bandwidth;32
4.3.4.1;1.3.4.1 Broadband Techniques;33
4.3.5;1.3.5 Noise Figure;35
4.3.5.1;1.3.5.1 Amplifier Design for Minimal Noise Figure;35
4.3.5.2;1.3.5.2 Effects of Amplifier Mismatch;36
4.3.5.3;1.3.5.3 Noise Figure in a Cascaded System;37
4.3.6;1.3.6 Linearity;38
4.3.6.1;1.3.6.1 Gain Compression;39
4.3.6.2;1.3.6.2 Intermodulation and Harmonic Distortion;39
4.3.6.3;1.3.6.3 Amplifier Dynamic Range;42
4.3.7;1.3.7 Reverse Isolation;43
4.3.8;1.3.8 Output Power and Efficiency;43
4.4;1.4 Role of Electronic Design Automation in Power Amplifier Design;46
4.5;1.5 Content Overview;47
4.6;References;47
5;2 Systems Aspects of Millimeter-Wave Power Amplifiers;51
5.1;2.1 Antennas for Millimeter-Wave Applications;52
5.1.1;2.1.1 Antenna Parameters;52
5.1.1.1;2.1.1.1 Power Radiated by an Antenna;52
5.1.1.2;2.1.1.2 Antenna Directivity;54
5.1.1.3;2.1.1.3 Radiation Efficiency and Antenna Gain;55
5.1.1.4;2.1.1.4 Antenna Aperture Efficiency;56
5.1.2;2.1.2 Antenna Structures for Millimeter-Wave Systems;56
5.1.2.1;2.1.2.1 Slot Arrays;57
5.1.2.2;2.1.2.2 Integrated Horn Antennas;57
5.1.2.3;2.1.2.3 Conventional Printed Antennas;58
5.1.2.4;2.1.2.4 Surface Wave and Leaky Wave Antennas;59
5.1.2.5;2.1.2.5 Dielectric Resonator Antennas;60
5.2;2.2 Millimeter-Wave Wireless Communication Systems;60
5.2.1;2.2.1 The Friis Transmission Formula;61
5.2.2;2.2.2 Link Budget;62
5.2.3;2.2.3 Digital Modulation;64
5.2.3.1;2.2.3.1 Orthogonal Frequency Division Multiplexing;65
5.2.3.2;2.2.3.2 Constant Envelope Modulation;66
5.2.3.3;2.2.3.3 Single-Carrier Modulation Schemes;66
5.2.4;2.2.4 Wireless Communication Standards;67
5.2.5;2.2.5 Millimeter-Wave Cellular Networks;68
5.2.6;2.2.6 Wireless Communication Algorithms;69
5.2.6.1;2.2.6.1 Multiple Input, Multiple Output;69
5.2.6.2;2.2.6.2 Cooperative Communications;70
5.2.6.3;2.2.6.3 Dynamic Spectrum Access;71
5.3;2.3 Millimeter-Wave Radar;71
5.3.1;2.3.1 Radar Fundamentals;73
5.3.1.1;2.3.1.1 Radar Measurements;75
5.3.1.2;2.3.1.2 Radar Functions;79
5.3.1.3;2.3.1.3 Radar Resolution;81
5.3.2;2.3.2 Automotive Radar;82
5.3.2.1;2.3.2.1 Frequency Regulation;82
5.3.2.2;2.3.2.2 Classification of Automotive Radar Systems;84
5.3.3;2.3.3 Military Radar;84
5.4;2.4 Imaging;85
5.4.1;2.4.1 Millimeter-Wave Radiometry;86
5.4.2;2.4.2 Millimeter-Wave Imaging Systems;87
5.4.2.1;2.4.2.1 Aircraft Guidance Assistance;87
5.4.2.2;2.4.2.2 Airport Security;88
5.5;2.5 Closing Remarks;88
5.6;References;89
6;3 Technologies for Millimeter-Wave Power Amplifiers;93
6.1;3.1 The Importance of Silicon to Integrated Circuits;93
6.2;3.2 Bipolar Transistors;94
6.2.1;3.2.1 Operating Principles in the Forward-Active Mode;95
6.2.2;3.2.2 Frequency Limitations;98
6.2.2.1;3.2.2.1 Small-Signal Modeling;98
6.2.2.2;3.2.2.2 Transit Time;99
6.2.2.3;3.2.2.3 Cutoff Frequency;102
6.3;3.3 Heterojunction Bipolar Transistors;105
6.3.1;3.3.1 SiGe Epitaxy;107
6.3.2;3.3.2 HBT Figures of Merit;107
6.3.2.1;3.3.2.1 DC Characteristics;107
6.3.2.2;3.3.2.2 Frequency Response;109
6.3.2.3;3.3.2.3 Noise Performance;109
6.3.3;3.3.3 Vertical and Lateral Scaling;111
6.4;3.4 Field-Effect Transistors;112
6.4.1;3.4.1 Basic MOSFET Operation;113
6.4.2;3.4.2 High Frequency Performance;114
6.4.2.1;3.4.2.1 Small-Signal Modeling;115
6.4.3;3.4.3 CMOS for Millimeter-Wave Circuits;117
6.5;3.5 High Electron Mobility Transistors;118
6.6;3.6 Passive Components;119
6.6.1;3.6.1 On-Chip Inductors;120
6.6.2;3.6.2 Schottky Barrier Diodes;123
6.6.3;3.6.3 PIN Diodes;124
6.6.4;3.6.4 Through-Silicon via Technology;125
6.6.5;3.6.5 Capacitors;126
6.6.6;3.6.6 On-Chip Transmission Lines;126
6.7;3.7 System-on-Package Technology;128
6.8;3.8 Closing Remarks;129
6.9;References;129
7;Design Principles and State of the Art Review;134
8;4 Linear-Mode Millimeter-Wave Power Amplifiers;135
8.1;4.1 Analysis of Reduced Conduction Angle Waveforms;136
8.1.1;4.1.1 Drain Current;136
8.1.1.1;4.1.1.1 Constant Input Power;136
8.1.1.2;4.1.1.2 Variable Input Power;140
8.1.2;4.1.2 Shape Factor;142
8.1.3;4.1.3 Output Power;143
8.1.4;4.1.4 Loadline Resistance;144
8.1.5;4.1.5 Power Gain;144
8.2;4.2 Nonlinear Device Modeling and Performance;145
8.2.1;4.2.1 Device Operating Regions;146
8.2.2;4.2.2 Power-Added Efficiency;147
8.2.3;4.2.3 Small-Signal Intrinsic Modeling;148
8.2.4;4.2.4 Intrinsic Device Frequency Performance;149
8.2.5;4.2.5 MOSFET Layout Considerations;151
8.2.5.1;4.2.5.1 Gate Parameters;152
8.2.5.2;4.2.5.2 Source Parameters;152
8.2.5.3;4.2.5.3 Drain Parameters;153
8.2.6;4.2.6 Large-Signal Device Characterization and Operation;154
8.2.6.1;4.2.6.1 Device Limitations;154
8.2.6.2;4.2.6.2 Transistor Geometry;155
8.2.6.3;4.2.6.3 Loadline Resistance;156
8.2.6.4;4.2.6.4 Output Matching;156
8.3;4.3 Power Amplifier Classification;157
8.3.1;4.3.1 Modes of Operation;158
8.3.1.1;4.3.1.1 Class A;158
8.3.1.2;4.3.1.2 Class AB and B;161
8.3.1.3;4.3.1.3 Class C;164
8.3.2;4.3.2 Class A, AB, B and C Amplifier Topologies;166
8.3.2.1;4.3.2.1 Baseline Class A, AB, B and C Topology;166
8.3.2.2;4.3.2.2 Complementary Push-Pull Power Amplifiers;166
8.3.2.3;4.3.2.3 Transformer-Coupled Push-Pull Power Amplifiers;168
8.4;4.4 Closing Remarks;170
8.5;References;170
9;5 Millimeter-Wave Switching Mode Power Amplifiers;173
9.1;5.1 Fundamentals of Switching Mode Operation;174
9.1.1;5.1.1 Broadband Resistive Load;174
9.1.2;5.1.2 Tuned Load;178
9.2;5.2 Switching Mode Power Amplifier Classes;180
9.2.1;5.2.1 Comparison to Current-Source Amplifiers;180
9.2.2;5.2.2 Class D;182
9.2.3;5.2.3 Class E;184
9.2.3.1;5.2.3.1 Theory of Operation;185
9.2.3.2;5.2.3.2 Simple Bipolar Class E Amplifier Design;192
9.3;5.3 Switching Mode Amplifiers in Millimeter-Wave CMOS Technology;194
9.3.1;5.3.1 Parasitic Effects at Millimeter-Wave Frequencies;194
9.3.2;5.3.2 Improved Millimeter-Wave CMOS Class E Amplifier Design Methodology;195
9.3.2.1;5.3.2.1 Circuit Analysis;195
9.3.2.2;5.3.2.2 Parameter Optimization;198
9.4;5.4 Switching Mode Class E Amplifiers in SiGe HBT Technology;199
9.4.1;5.4.1 SiGe HBT Class E Amplifier Design Methodology for Millimeter-Wave Operation;199
9.4.2;5.4.2 Limitations on the Performance of Millimeter-Wave SiGe HBT Switching Amplifiers;203
9.4.3;5.4.3 Operating SiGe HBTs Beyond the {\varvec BV}_{{{\varvec CEO}}} Point;203
9.5;5.5 Transmitter Linearization Techniques for Switching Amplifiers;204
9.5.1;5.5.1 Outphasing Transmitters;204
9.5.2;5.5.2 Polar Transmitters;206
9.6;5.6 Concluding Remarks;207
9.7;References;207
10;6 Millimeter-Wave Stacked-Transistor Amplifiers;211
10.1;6.1 Stacking of FET Devices;212
10.1.1;6.1.1 Gate Capacitance {\varvec C}_{{\varvec N}};213
10.1.2;6.1.2 Voltage Handling and Optimal Drain Impedance;215
10.1.3;6.1.3 Benefits and Challenges in Stacked Transistor Amplifier Design;218
10.2;6.2 Device Technology for Implementing Millimeter-Wave Stacked Amplifiers;219
10.3;6.3 Intermediate Node Matching;220
10.3.1;6.3.1 Determining the Optimal Complex Node Impedance;221
10.3.2;6.3.2 Effects of Phase Mismatch on Output Power and Efficiency;222
10.3.3;6.3.3 Matching for the Optimal Intermediate Node Impedance;223
10.3.3.1;6.3.3.1 Shunt Inductive Tuning;224
10.3.3.2;6.3.3.2 Series Inductive Tuning;225
10.3.3.3;6.3.3.3 Shunt Feedback Capacitive Tuning;226
10.4;6.4 Class E-like Stacked-Transistor Amplifiers;226
10.4.1;6.4.1 Switching FET Operation and Circuit Models;227
10.4.2;6.4.2 Analysis and Design of Millimeter-Wave Stacked-FET Class E-like Power Amplifiers;229
10.4.2.1;6.4.2.1 Methodology;229
10.4.2.2;6.4.2.2 Comparing Designs Through Waveform Figures of Merit;230
10.4.2.3;6.4.2.3 Active Drive Configurations;233
10.4.3;6.4.3 Analysis and Design of Millimeter-Wave Stacked-HBT Class E-like Power Amplifiers;233
10.4.3.1;6.4.3.1 Double Stack HBT Configuration;233
10.4.3.2;6.4.3.2 Triple Stack HBT Configuration;237
10.5;6.5 Multiple-Gate-Cell Stacked FET Amplifiers;241
10.5.1;6.5.1 Multiple-Gate-Cell Architecture;242
10.5.2;6.5.2 Design Concerns for Multiple-Gate FET Power Amplifiers;242
10.5.2.1;6.5.2.1 Interconnect Parasitics;242
10.5.2.2;6.5.2.2 Contact Parasitics;244
10.5.2.3;6.5.2.3 Thermal Design;244
10.5.2.4;6.5.2.4 Low-Q Gate Capacitance;245
10.6;6.6 Closing Remarks;245
10.7;References;246
11;7 Performance Enhancement Techniques for Millimeter-Wave Power Amplifiers;249
11.1;7.1 Improving Efficiency and Linearity;249
11.1.1;7.1.1 Fundamentals of Efficiency Improvement Techniques;249
11.1.2;7.1.2 Power Amplifier Linearization Techniques;253
11.1.2.1;7.1.2.1 Introduction to Linearization;254
11.1.2.2;7.1.2.2 An Overview of Predistortion Theory;255
11.1.2.3;7.1.2.3 Digital Predistortion;257
11.1.2.4;7.1.2.4 Introduction to Feedforward Techniques;258
11.1.2.5;7.1.2.5 Gain Compression in Feedforward Amplifiers;260
11.1.2.6;7.1.2.6 Output Coupler Influence on Feedforward Performance;261
11.1.2.7;7.1.2.7 Adaptive Feedforward Loops;262
11.1.2.8;7.1.2.8 Direct and Indirect Feedback Techniques;263
11.1.2.9;7.1.2.9 Cartesian Feedback;264
11.1.3;7.1.3 Doherty Amplifiers;267
11.1.3.1;7.1.3.1 Theory of Operation;267
11.1.3.2;7.1.3.2 Transformer-Based Doherty Power Amplifiers;275
11.1.3.3;7.1.3.3 Active Phase Shifting Doherty Power Amplifiers;276
11.1.3.4;7.1.3.4 Comparison of Millimeter-Wave Doherty Amplifiers;278
11.2;7.2 Improving Output Power;278
11.2.1;7.2.1 Performance Metrics of On-Chip Power Combining Techniques;279
11.2.1.1;7.2.1.1 Area Efficiency;279
11.2.1.2;7.2.1.2 Spatial Power Density;279
11.2.2;7.2.2 Planar Power Combining;280
11.2.2.1;7.2.2.1 Wilkinson Combiner;280
11.2.2.2;7.2.2.2 Capacitive Combiner;281
11.2.3;7.2.3 Transformer-Based Power Combining Techniques;288
11.2.3.1;7.2.3.1 Voltage-Combining Transformer;290
11.2.3.2;7.2.3.2 Current-Combining Transformer;292
11.2.3.3;7.2.3.3 Current-Voltage-Current Combining Transformer;294
11.2.3.4;7.2.3.4 Summary of Transformer-Based Combiner Networks;295
11.2.4;7.2.4 Three-Dimensional Power Combining;296
11.2.5;7.2.5 Spatial Power Combining;296
11.2.6;7.2.6 Comparison of Power Combining Amplifiers;297
11.3;7.3 Broadband Amplifiers and Bandwidth Improvement Techniques;297
11.3.1;7.3.1 Differential Amplifiers;298
11.3.2;7.3.2 Balanced Amplifiers;299
11.3.3;7.3.3 Distributed Amplifiers;300
11.3.3.1;7.3.3.1 Efficiency Limitations of Distributed Amplifiers;301
11.3.3.2;7.3.3.2 Supply Scaling in Distributed Amplifiers;304
11.3.3.3;7.3.3.3 Bandpass Distributed Amplifier Design Methodology;306
11.4;7.4 Closing Remarks;308
11.5;References;309
12;8 Architecture Considerations for Millimeter-Wave Power Amplifiers;316
12.1;8.1 Biasing of High-Frequency Power Transistors;316
12.1.1;8.1.1 Transistor Stability;316
12.1.2;8.1.2 Supply Modulation;319
12.1.3;8.1.3 Bias Network Design;319
12.1.4;8.1.4 Adaptive Biasing of CMOS Power Amplifiers;320
12.2;8.2 Millimeter-Wave Transmitter Architectures;321
12.2.1;8.2.1 Linear Transmitter Architectures;322
12.2.1.1;8.2.1.1 Doherty Amplifiers;323
12.2.2;8.2.2 Power-Combining Amplifiers;325
12.2.2.1;8.2.2.1 Performance Metrics of On-Chip Power Combining;326
12.2.2.2;8.2.2.2 Capacitive Combiners;327
12.2.2.3;8.2.2.3 Transformer-Coupled Power Combining;327
12.2.3;8.2.3 Outphasing Transmitters;329
12.2.3.1;8.2.3.1 Theory of Operation;331
12.2.3.2;8.2.3.2 Outphasing Signal Generation;332
12.2.3.3;8.2.3.3 Signal Combining;334
12.2.4;8.2.4 Polar Transmitters;337
12.2.4.1;8.2.4.1 Digital Polar Transmitters;338
12.2.5;8.2.5 Phased Array Transmitter Architectures;338
12.2.5.1;8.2.5.1 Transmitter Overview;338
12.2.5.2;8.2.5.2 Power Distribution;339
12.2.5.3;8.2.5.3 Bandwidth Limitations of Large Arrays;342
12.2.5.4;8.2.5.4 Phase Shifting;343
12.2.5.5;8.2.5.5 Amplitude Tapering in Non-Uniform Arrays;344
12.2.6;8.2.6 Sliding-IF Transmitters;346
12.2.7;8.2.7 Multistage Power Amplifiers;348
12.2.8;8.2.8 Push-Pull Techniques;349
12.3;8.3 Self-healing Techniques for Millimeter-Wave Power Amplifiers;350
12.3.1;8.3.1 Design Considerations for Self-healing System Components;352
12.3.1.1;8.3.1.1 Sensors;352
12.3.1.2;8.3.1.2 Control Actuators;353
12.3.1.3;8.3.1.3 Data Converters;353
12.3.1.4;8.3.1.4 DSP Core;354
12.3.2;8.3.2 Sensor Characteristics and Performance Metrics;354
12.3.2.1;8.3.2.1 Responsiveness and Latency;354
12.3.2.2;8.3.2.2 Noise and Sensitivity;355
12.3.2.3;8.3.2.3 Dynamic Range;355
12.3.2.4;8.3.2.4 Linearity and Monotonicity;355
12.3.2.5;8.3.2.5 Power and Performance Overhead;355
12.3.3;8.3.3 Sensor Measurements;356
12.3.3.1;8.3.3.1 DC Power and Efficiency;356
12.3.3.2;8.3.3.2 RF Power;356
12.3.3.3;8.3.3.3 Temperature;357
12.3.4;8.3.4 Processor Interface;358
12.3.4.1;8.3.4.1 Digitizing Analog Sensor Inputs;358
12.3.4.2;8.3.4.2 Generating Analog Actuator Inputs;358
12.3.5;8.3.5 Actuation Techniques;359
12.3.5.1;8.3.5.1 Actuators for Gate Bias Voltage Adjustment;359
12.3.5.2;8.3.5.2 Passive Network Tuning;359
12.3.5.3;8.3.5.3 Actuating the DC Supply and the Transistor Architecture;360
12.4;8.4 Concluding Remarks;360
12.5;References;361




