Eschenauer / Koski / Osyczka | Multicriteria Design Optimization | E-Book | www.sack.de
E-Book

E-Book, Englisch, 482 Seiten, eBook

Eschenauer / Koski / Osyczka Multicriteria Design Optimization

Procedures and Applications
1990
ISBN: 978-3-642-48697-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Procedures and Applications

E-Book, Englisch, 482 Seiten, eBook

ISBN: 978-3-642-48697-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Interest in the fascinating field of multicriteria optimization and its application to design processes has grown very quickly in recent years. Researchers and practising engineers will find this book an comprehensive presentation of this subject. After an introduction to multicriteria optimization and the advantages of using multicriteria techniques, the first part of the book presents methods and computer procedures for solving multicriteria optimum design problems including interactive methods and knowledge-based systems. The second part presents an extensive range of applications of these methods to design processes in the fol- lowing fields: mechanisms and dynamic systems, aircraft and space technology, machine tool design, metal forming and cast metal technology, civil and architectural engineering, and structures made of advanced materials.

Eschenauer / Koski / Osyczka Multicriteria Design Optimization jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1 Multicriteria Optimization-Fundamentals and Motivation.- 1.1 Introduction.- 1.1.1 On the Historical Development of Optimization Techniques.- 1.1.2 Necessity of Applying Optimization Techniques to the Design Process.- 1.1.3 Multicriteria Optimization as a Strategy in the Design Process.- 1.2 Mathematical Fundamentals.- 1.2.1 General Definitions and Notations in Scalar Optimization.- 1.2.2 The Multicriteria Programming Problem.- 1.2.3 The Multicriteria Control Problem.- 1.3 Components and Plants with their Objectives.- 1.3.1 Optimum Design of Highly Accurate Parabolic Antennas.- 1.3.2 Optimal Layout of a Novel Solar Energy Collector.- 1.3.3 Shape Optimization of Satellite Tanks.- 1.3.4 Optimal Shape Design.- 1.3.5 Optimal Layout of Tube-Flange Structures.- 1.4 Conclusion.- References.- I Procedures.- 2 Optimization Procedure SAPOP-A General Tool for Mu1ticriteria Structural Designs.- 2.1 Demands on an Optimization Procedure.- 2.2 Structure of the Optimization Procedure.- 2.2.1 Definitions.- 2.2.2 Three-Columns Concept.- 2.3 Basic Ideas of the Procedure SAPOP.- 2.3.1 Problem Formulation and Input Data.- 2.3.2 SAPOP Main Module.- 2.3.3 Evaluation of the Optimization Results.- 2.4 Optimization Modelling.- 2.4.1 Design Models.- 2.4.2 Evaluation Models.- 2.4.3 Sensitivity Analysis.- 2.5 Description of Two Optimization Algorithms.- 2.5.1 Sequential Linear Programming Method (SEQLI).- 2.5.2 Hybrid Method of Quadratic Programming with Reduced Line-Search Technique (QPRLT).- 2.6 Comparison with other Structural Optimization Software Systems.- 2.7 Application Example.- 2.8 Conclusion.- References.- 3 Interactive Multicriteria Optimization in Design Process.- 3.1 Introduction.- 3.2 Interactive Multicriteria Optimization Procedures.- 3.2.1 General Remarks on Classification.- 3.2.2 Approach by Fandel.- 3.2.3 STEP-Method.- 3.2.4 Approach by Jahn.- 3.2.5 Approach by Geoffrion.- 3.3 Software Package DIALOG.- 3.3.1 Basic Structure.- 3.3.2 Interactive MO-Layout of a Conical Shell.- 3.4 Software Package CAMOS.- 3.4.1 Optimization Algorithms Used in CAMOS.- 3.4.2 Multicriteria Strategy Approaches.- 3.4.3 Description of CAMOS.- 3.4.4 Interactive MO-Layouts of a Machine Tool Spindle.- 3.5 Conclusion.- References.- 4. Knowledge Engineering and Multicriteria. Optimization.- 4.1 Introduction.- 4.2 Knowledge Engineering.- 4.2.1 General Concept.- 4.2.2 Architecture of a Knowledge-Based System.- 4.3 Role of a Knowledge-Based Approach in Multicriteria Optimization.- 4.4 Knowledge-Based Optimization Formulation.- 4.4.1 Description and Representation of Optimization Problems.- 4.4.2 Mathematical Symbolic Manipulation.- 4.4.3 Mathematical Formulation of Optimization Problems.- 4.5 Knowledge-Based Optimization Control.- 4.5.1 Recognition of Optimization Formulation.- 4.5.2 Optimization Algorithm Selection.- 4.5.3 Knowledge-Based Control in Pareto-Optimal Set Generation.- 4.6 Illustration Example.- 4.6.1 System Implementation.- 4.6.2 Knowledge-Based Optimization Formulation and Recognition.- 4.6.3 Knowledge-Based Control in Pareto-Optimal Set Generation.- 4.7 Conclusion.- References.- II Applications.- 5 Mechanisms and Dynamic Systems.- 5.1 Optimal Counterweight Balancing of Robot Arms Using Multicriteria Approach.- 5.1.1 Introduction.- 5.1.2 Kinetic Model of a Robot Arm.- 5.1.3 Formulation of the Optimization Problem.- 5.1.4 Solution Method.- 5.1.5 Pareto-Optimal Designs.- 5.1.6 Conclusion.- References.- 5.2 Multicriteria Optimization of Computationally Expensive Functions and its Application to Robot Spring Balancing Mechanism Design.- 5.2.1 Introduction.- 5.2.2 General Description of the Method.- 5.2.3 Optimum Design of Spring Balancing Mechanisms of Industrial Robots.- 5.2.4 Computer Aided Optimum Design of a Robot Spring Balancing Mechanism.- 5.2.5 Conclusion.- References.- 5.3 On the Optimal Synthesis of an Automotive Drive Train.- 5.3.1 The Automotive Drive Train.- 5.3.2 The Mechanical Model.- 5.3.3 The Optimization Model.- 5.3.4 The Solution Procedure.- 5.3.5 Results.- 5.3.6 Conclusion.- References.- 5.4 Modelling of Multibody Systems by Means of Optimization Procedures.- 5.4.1 Adapted Models for Elasto-Mechanical Systems.- 5.4.2 Adaptation of the Model as Optimization Procedure.- 5.4.3 Example: Adapted Model for the Reflector of a Parabolic Antenna.- 5.4.4 Conclusion.- References.- 5.5 Approximation Methods in Structural Optimization Using Experimental Designs for Multiple Responses.- 5.5.1 Introduction.- 5.5.2 Experimental Designs in the Case of a Single Response Variable.- 5.5.3 Experimental Designs in the Case of Multiple Responses.- 5.5.4 Model Fitting and Testing.- 5.5.5 Computer Program for Experimental Design.- 5.5.6 Application.- 5.5.7 Conclusion.- References.- 6 Aircraft aril Space Technology.- 6.1 Multicriteria Optimal Layouts of Aircraft and Spacecraft Structures.- 6.1.1 Introduction.- 6.1.2 Optimization Procedure.- 6.1.3 Multicriteria Optimization of a Composite Fin.- 6.1.4 Heat Flux and Frequency Optimization of a Satellite Structure.- 6.1.5 Conclusion.- References.- 6.2 Multicriteria Design of Spacecraft Structures with Special Emphasis on Mass and Stiffness.- 6.2.1 Introduction and Technical Background.- 6.2.2 Problem Statement and Discussion.- 6.2.3 Considerations on Optimality Criteria.- 6.2.4 Solution Strategies.- 6.2.5 Examples of Spacecraft Structural Optimization.- 6.2.6 Conclusion.- References.- 7 Machine Tool Design.- 7.1. Application of Multicriteria Optimization Methods to Machine Tool Structural Design.- 7.1.1 Evaluative Factors of Machine Tools.- 7.1.2 Competitive and Cooperative Relationships between Evaluative Factors.- 7.1.3 Design Optimization Procedures.- 7.1.4 Application Examples.- 7.1.5 Conclusion.- References.- 7.2 Decomposition Method for Multicriteria Optimization and its Application to Machine Tool Spindle Design.- 7.2.1 Introduction.- 7.2.2 Four-Stage Multicriteria Optimization Strategy.- 7.2.3 Application of the Strategy to the Design of a Machine Tool Spindle System with Hydrostatic Bearings.- 7.2.4 Numerical Example.- 7.2.5 Conclusion.- References.- 8 Metal Forming and Cast Metal Technology.- 8.1 Optimal Die Design for Symmetric Strip Drawing.- 8.1.1. Introduction and Review.- 8.1.2 The Mathematical Model.- 8.1.3 The Ubiquitous Conical Die.- 8.1.4 Conclusion.- References.- 8.2 Optimal Layouts of Chilled Cast-Iron High Quality Rollers.- 8.2.1 Introduction.- 8.2.2 Definition of the Optimization Problem.- 8.2.3 Structural Analysis.- 8.2.4 Realization of an Optimization Loop.- 8.2.5 Optimization Results.- 8.2.6 Conclusion.- Acknowledgement.- References.- 8.3 A Mechanical Model for the Optimization and Simulation of the Metal Forming Process in Roller Levelling of Sheets.- 8.3.1 Introduction.- 8.3.2 Mechanical Model.- 8.3.3 Formulation of the Optimization Problem.- 8.3.4 Results and Discussion.- References.- 9 Civil and Architectural Engineering.- 9.1 Multicriteria Optimization of Concrete Beams, Trusses, and Cable Structures.- 9.1.1 Introduction.- 9.1.2 Optimization of a Prestressed Concrete I-Beam.- 9.1.3 Optimization of Isostatic Trusses.- 9.1.4 Optimization of Cable Structures.- 9.1.5 Further Applications of Muticriteria Optimization.- References.- 9.2 Design Decision Making Using Pareto-Optimal Dynamic Programming.- 9.2.1 The Stage-State Model of Optimization.- 9.2.2 Dynamic Programming.- 9.2.3 The Computer System — SID.- 9.2.4 A Building Design Example Using SID.- 9.2.5 Conclusion.- References.- 10 Structures Made of Advanced Materials.- 10.1 Fibre-Reinforced Plate and Shell Structures under Various Loads — Proposals for their Optimization.- 10.1.1 Introduction.- 10.1.2 Structural Modelling and Analysis.- 10.1.3 Objective Functions — Design Variables — Constraints.- 10.1.4 Examples of Application.- 10.1.5 Conclusion.- References.- 10.2 Multicriteria Thermoelastic Design of Antisymmetric Angle-Ply Laminates.- 10.2.1 Introduction.- 10.2.2 Thermoelastic Buckling and Bending Equations.- 10.2.3 Multicriteria Design Problem.- 10.2.4 Solution Method.- 10.2.5 Numerical Results.- 10.2.6 Conclusion.- References.- 10.3 Multicriteria Optimization and Advanced Materials in Telescope Design.- 10.3.1 Motivation and Problem Formulation.- 10.3.2 Program System for Structural Analysis and Optimization.- 10.3.3 Application to a Submillimeter-Telescope.- 10.3.4 Conclusion and Future Prospects.- References.- 10.4 Multicriteria Design of Ceramic Components.- 10.4.1 Introduction.- 10.4.2 Structural Analysis and Reliability of Ceramic Components.- 10.4.3 Multicriteria Shape Optimization Problem.- 10.4.4 Pareto-Optima of Ceramic Cantilever.- 10.4.5 Design of a Ceramic Piston Crown.- 10.4.6 Conclusion.- References.- Author Index.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.