E-Book, Englisch, 688 Seiten
Reihe: Geophysical Sciences
Favali / Beranzoli / De Santis SEAFLOOR OBSERVATORIES
1. Auflage 2015
ISBN: 978-3-642-11374-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
A New Vision of the Earth from the Abyss
E-Book, Englisch, 688 Seiten
Reihe: Geophysical Sciences
ISBN: 978-3-642-11374-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
The oceans cover 70% of the terrestrial surface, and exert a pervasive influence on the Earth's environment but their nature is poorly recognized. Knowing the ocean's role deeply and understanding the complex, physical, biological, chemical and geological systems operating within it represent a major challenge to scientists today. Seafloor observatories offer scientists new opportunites to study multiple, interrelated natural phenomena over time scales ranging from seconds to decades, from episodic to global and long-term processes.Seafloor Observatories poses the important and apparently simple question, 'How can continuous and reliable monitoring at the seafloor by means of Seafloor Observatories extend exploration and improve knowledge of our planet?' The book leads the reader through:the present scientific challenges to be addressed with seafloor observatoriesthe technical solutions for their architecturean excursus on worldwide ongoing projects and programmessome relevant scientific multidisciplinary resultsanda presentation of new and interesting long-term perspectives for the coming years.Current results will yield significant improvements and exert a strong impact not only on our present knowledge of our planet but also on human evolution.
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;6
2;List of figures;18
3;List of tables;30
4;1 Introduction;33
5;Part I Present scientific challenges to be addressed using seafloor observatories;35
6;2 Integrating continuous observatory data from the coast to the abyss: Assembling a multidisciplinary view of the ocean in four dimensions;36
6.1;2.1 Introduction;36
6.2;2.2 Spatial (environmental) scope;37
6.3;2.3 Temporal scope;38
6.4;2.4 Catastrophic episodicity;39
6.5;2.5 Complex interconnectedness;40
6.6;2.6 Challenges of multidisciplinarity;40
6.7;2.7 Integrated networks;40
6.8;2.8 Scientific initiatives;41
6.9;2.9 Scientific development;42
6.9.1;2.9.1 Builders;42
6.9.2;2.9.2 Future builders;43
6.9.3;2.9.3 Bridge-builders;44
6.9.4;2.9.4 Data analysts;46
6.9.5;2.9.5 Knowledge beneficiaries;47
6.10;2.10 Participants and data access;48
6.11;2.11 Summary;49
6.12;References;49
7;3 Underwater neutrino telescopes: Detectors for astro-particle physics and a gateway for deep-sea laboratories;53
7.1;3.1 Introduction;53
7.2;3.2 High-energy neutrino astronomy;55
7.3;3.3 High-energy neutrino detection;58
7.3.1;3.3.1 The Cherenkov detection technique in transparent natural media;59
7.3.2;3.3.2 Underwater Cherenkov neutrino telescopes;61
7.4;3.4 Towards a deep-sea infrastructure for neutrino astronomy and Earth and sea science in the Mediterranean Sea;63
7.4.1;3.4.1 NESTOR: Neutrino Extended Submarine Telescope with Oceanographic Research;65
7.4.2;3.4.2 ANTARES: Astronomy with a Neutrino Telescope and Abyss environmental RESearch;66
7.4.3;3.4.3 NEMO: NEutrino Mediterranean Observatory;67
7.4.4;3.4.4 KM3NeT;69
7.4.5;3.4.4.1 Optical modules;70
7.4.6;3.4.4.2 Detection unit mechanical structure;71
7.4.7;3.4.4.3 Readout technology;73
7.4.8;3.4.4.4 Sea-floor network;74
7.5;3.5 Beyond the km3: New techniques for ultra-high-energy neutrino detection;74
7.6;3.6 Deep-sea science with neutrino telescopes;75
7.6.1;3.6.1 Bioluminescence;76
7.6.2;3.6.2 Seawater optical properties;77
7.6.3;3.6.3 Biofouling and sedimentation;79
7.6.4;3.6.4 Underwater currents;79
7.6.5;3.6.5 Bioacoustics;80
7.6.6;3.6.6 Geophysics;81
7.7;3.7 Conclusions;82
7.8;References;82
7.9;Web resources;87
8;4 Seafloor observations and observatory activities in the Sea of Marmara;88
8.1;4.1 Introduction;88
8.2;4.2 Geohazards in the Sea of Marmara;90
8.2.1;4.2.1 The Sea of Marmara seismic gap;90
8.2.2;4.2.2 Submarine landslides;91
8.2.3;4.2.3 Tsunamis;91
8.3;4.3 Fluids and seismicity in the Sea of Marmara;92
8.4;4.4 Oceanographic and environmental sensitivity of the Sea of Marmara;94
8.5;4.5 Sensors for seafloor observations in the Sea of Marmara;94
8.5.1;4.5.1 Seismic motion;94
8.5.2;4.5.2 Flowmeters;94
8.5.3;4.5.3 Piezometers (pore-pressure sensors);95
8.5.4;4.5.4 Gas-bubble monitoring;95
8.5.5;4.5.5 Methane sensor;97
8.5.6;4.5.6 Oceanographic sensors;98
8.6;4.6 Recommended observatory sites;99
8.7;4.7 Present initiatives for seafloor observatories in the Sea of Marmara;100
8.7.1;4.7.1 Marmara Sea Bottom Observatory (MSBO) project;100
8.7.2;4.7.2 The ESONET Marmara-Demonstration Mission project;100
8.8;4.8 Conclusions;102
8.9;References;102
9;5 The Hellenic deep sea observatory: Science objectives and implementation;109
9.1;5.1 Introduction;109
9.2;5.2 Hellenic observatory: Science objectives;111
9.2.1;5.2.1 Geodynamics and seismicity;111
9.2.2;5.2.2 Seafloor instabilities;112
9.2.3;5.2.3 Tsunamis;114
9.2.4;5.2.4 Fluid flow and mud volcanism;115
9.2.5;5.2.5 Thermohaline circulation and climate change;116
9.3;5.3 Existing stand-alone observatory (Poseidon system – Pylos site);117
9.3.1;5.3.1 Surface buoy: Air-sea interaction monitoring;117
9.3.2;5.3.2 Water column monitoring;118
9.3.3;5.3.3 Seabed platform;119
9.4;5.4 Ongoing operation management;119
9.4.1;5.4.1 Data flow, management and quality control procedures;119
9.4.2;5.4.2 Data and information product dissemination;121
9.4.3;5.4.3 Operation of the POSEIDON-Pylos observatory, 2007-2010;122
9.5;5.5 Concluding remarks;125
9.5.1;Acknowledgments;127
9.6;References;127
10;6 Marine seismogenic-tsunamigenic prone areas: The Gulf of Cadiz;132
10.1;6.1 Introduction;132
10.2;6.2 Large earthquakes and tsunamis in the Gulf of Cadiz;135
10.3;6.3 Main hazard source zones in SW Iberia;137
10.3.1;6.3.1 Gloria Fault;137
10.3.2;6.3.2 SW Iberian transpressive domain;137
10.3.3;6.3.2.1 Gorringe Bank zone;139
10.3.4;6.3.2.2 Horseshoe Marques-de-Pombal zone;139
10.3.5;6.3.2.3 The Algarve Margin;140
10.3.6;6.3.2.4 East dipping subduction slab;141
10.4;6.4 The strategy for seafloor continuous monitoring;142
10.4.1;6.4.1 First results;143
10.5;6.5 Conclusions;146
10.5.1;Acknowledgments;146
10.6;References;147
11;Part II Technical solutions for seafloor observatory architecture;153
12;7 The role of Information Communication Technologies (ICT) for seafloor observatories: Acquisition, archival, analysis, interoperability;154
12.1;7.1 Introduction;154
12.2;7.2 Different types of ocean observatories;155
12.3;7.3 Benefits of ICT for an ocean observatory;155
12.4;7.4 Mandate of a software infrastructure for ocean observatories;157
12.5;7.5 Observatory system design;157
12.5.1;7.5.1 Design decisions imposed on the ICT;158
12.5.2;7.5.2 Network design considerations;159
12.5.3;7.5.3 National security issues;159
12.5.4;7.5.4 General network security threats mitigation;160
12.5.5;7.5.5 Design choices;161
12.5.6;7.5.6 Private network and IP address range;161
12.5.7;7.5.7 Access only through VPN or through software proxies;162
12.5.8;7.5.8 Isolation of VLANs to isolate instrument categories from one another;162
12.5.9;7.5.9 User authentication and authorization;163
12.5.10;7.5.10 Timing and time signals;163
12.6;7.6 Data acquisition;164
12.6.1;7.6.1 Data types in ocean sciences;165
12.6.1.1;7.6.1.1 Data flow as streams – Data flow as an event management problem;165
12.6.1.2;7.6.1.2 Interfaces to many different types of instruments;166
12.6.1.3;7.6.1.3 Interoperability;167
12.6.1.4;7.6.1.4 Science data vs. engineering data;167
12.6.2;7.6.2 Data archive and distribution management;168
12.6.2.1; 7.6.2.1 The cost of a 25-year mandate;168
12.6.3;7.6.3 Data repository growth: Constant, linear or exponential?;170
12.6.3.1;7.6.3.1 Types of products;170
12.6.3.2;7.6.3.2 Evolution of raw data rate;171
12.6.3.3;7.6.3.3 Adapting the storage structure to expected use;172
12.6.3.4;7.6.3.4 Observatory assets management and operation support;173
12.6.3.5;7.6.3.5 Data access and analysis;174
12.6.3.6;7.6.3.6 Remote use of underwater assets;176
12.7;7.7 Summary;176
12.8;7.8 Non-exhaustive list of ocean observatories;178
12.9;Reference;178
12.10;Glossary of acronyms;178
13;8 Long-term subsea observatories: Comparison of architectures and solutions for infrastructure design, interfaces, materials, sensor protection and deployment operations;180
13.1;8.1 Introduction;180
13.2;8.2 Comparison between observatory architectures;181
13.2.1;8.2.1 Vertically cabled architecture;181
13.2.2;8.2.2 Non-cabled architecture;181
13.2.3;8.2.3 Cabled architecture;183
13.2.3.1;8.2.3.1 Architecture and mechanical design of a node and a junction box;184
13.2.3.1.1;Mechanical design overview;187
13.2.3.1.2;SJB design solutions;187
13.3;8.3 Recommendations for signals, protocols and connector pin-out between infrastructure and instrumentation;189
13.4;8.4 Long-term deployment: Materials for subsea observatories;192
13.5;8.5 Long-term deployment: Biofouling protection for marine environmental devices and sensors;193
13.5.1;8.5.1 Biofouling protection by “controlled” biocide generation: Localized seawater electro-chlorination system;195
13.6;8.6 ROV operations: Deployment and maintenance operations;197
13.7;8.7 Conclusion and next steps;198
13.7.1;Acknowledgments;199
13.8;References;199
13.8.1;Web resources;201
13.9;Glossary;201
14;9 Development and demonstration of a mobile response observatory prototype for subsea environmental monitoring: The case of ROSE;203
14.1;9.1 Introduction;203
14.2;9.2 System specifications;204
14.2.1;9.2.1 Functional specifications;204
14.2.2;9.2.2 Technical specifications;206
14.2.3;9.2.2.1 Acoustic network;206
14.2.4;9.2.2.2 Radio-electric link;207
14.2.5;9.2.2.3 Information flows;208
14.2.6;9.2.2.4 Sea bottom stations;209
14.2.7;9.2.2.5 The buoy;211
14.2.8;9.2.2.6 On-shore control station;211
14.2.9;9.2.2.7 Messengers;212
14.3;9.3 Study and construction of a prototype system;213
14.3.1;9.3.1 Seafloor stations;213
14.3.2;9.3.2 Buoy;217
14.3.3;9.3.3 Sensors;217
14.4;9.4 Prototype tests in Ifremer seawater tank;218
14.4.1;9.4.1 Station tests;219
14.4.2;9.4.2 Messenger tests;219
14.5;9.5 Demonstration at sea;220
14.5.1;9.5.1 Sea operations;221
14.5.1.1;9.5.1.1 System deployment;221
14.5.1.2;9.5.1.2 System operation from mid-June to early September;221
14.5.1.3;9.5.1.3 System recovery;222
14.5.2;9.5.2 Analyses of at-sea demonstration results;222
14.5.2.1;9.5.2.1 Communication system and station operation;222
14.5.2.2;9.5.2.2 Biofouling;226
14.5.2.3;9.5.2.3 Messenger;226
14.5.2.4;9.5.2.4 Sensors;227
14.6;9.6 Conclusions;230
14.7;List of abbreviations;232
14.7.1;Acknowledgment;232
14.8;References;232
15;10 Construction of the DONET real-time seafloor observatory for earthquakes and tsunami monitoring;234
15.1;10.1 Introduction;234
15.2;10.2 System overview;236
15.3;10.3 Backbone cable system;237
15.4;10.4 Science node;238
15.5;10.5 Observatory;240
15.6;10.6 Scenario;242
15.7;10.7 ROV for observatory construction;243
15.8;10.8 DONET construction;248
15.9;10.9 Summary;249
15.9.1;Acknowledgment;250
15.10;References;250
16;11 GEOSTAR-class observatories 1995-2012: A technical overview;252
16.1;11.1 Introduction;252
16.2;11.2 The origins: ABEL and DESIBEL;253
16.3;11.3 GEOSTAR;255
16.3.1;11.3.1 GEOSTAR mission 1 (Adriatic Sea);269
16.3.2;11.3.2 GEOSTAR mission 2 (Southern Tyrrhenian Sea);270
16.3.3;11.3.3 GEOSTAR missions 3 and 4 (Southern Tyrrhenian Sea);273
16.3.4;11.3.4 GEOSTAR mission 5 (Gulf of Cadiz);277
16.3.5;11.3.5 GEOSTAR mission 6 (Gulf of Cadiz);280
16.4;11.4 SN1;284
16.4.1;11.4.1 SN1 mission 1 (Ionian Sea);286
16.4.2;11.4.2 SN1 mission 2 (Ionian Sea);288
16.4.3;11.4.3 SN1 mission 3 (Ionian Sea);291
16.5;11.5 MABEL (SN2);294
16.5.1;11.5.1 MABEL (SN2) mission 1 (Weddell Sea, Antarctica);298
16.6;11.6 SN3;298
16.6.1;11.6.1 SN3 missions 1 and 2 (Southern Tyrrhenian Sea);303
16.7;11.7 SN4;304
16.7.1;11.7.1 SN4 mission 1 (Corinth Gulf);306
16.7.2;11.7.2 SN4 missions 2 and 3 (Marmara Sea);309
16.8;11.8 GMM;312
16.8.1;11.8.1 GMM missions 1 and 2 (Gulf of Patras);313
16.8.2;11.8.2 GMM mission 3 (Ionian Sea);318
16.9;11.9 Conclusions;319
16.9.1;Acknowledgments;321
16.10;References;321
17;Part III World-wide recent and ongoing projects and programmes;328
18;12 The two seafloor geomagnetic observatories operating in the western Pacific;329
18.1;12.1 Introduction;329
18.2;12.2 Instrumentation at sea;331
18.3;12.3 Seafloor experiments;333
18.3.1;12.3.1 Observed time-series on the seafloor;337
18.4;12.4 The geomagnetic secular variation contained in the time series;339
18.5;12.5 Discussion;341
18.6;12.6 Conclusions;342
18.6.1;Acknowledgments;342
18.7;References;342
19;13 The DELOS project: Development of a long-term observatory in an oil field environment in the Tropical Atlantic Ocean;346
19.1;13.1 Introduction;346
19.1.1;13.1.1 Science and oil industry collaboration;347
19.1.2;13.1.2 Rational;348
19.2;13.2 System description;348
19.2.1;13.2.1 Seafloor docking stations;349
19.2.1.1;13.2.1.1 Glass fiber material testing;350
19.2.1.2;13.2.1.2 Structure analysis and modelling;350
19.2.1.3;13.2.1.3 Foundation design;352
19.2.1.4;13.2.1.4 Hydrodynamic modelling;353
19.2.1.5;13.2.1.5 Observatory modules;356
19.2.1.6;13.2.1.6 Camera module;356
19.2.1.6.1;Close view camera;356
19.2.1.6.2;Wide view camera;357
19.2.1.7;13.2.1.7 Oceanographic module;358
19.2.1.8;13.2.1.8 Acoustic module;358
19.2.1.8.1;Passive sonar;359
19.2.1.8.2;Active sonar;359
19.2.1.9;13.2.1.9 Sediment trap module;360
19.2.1.10;13.2.1.10 Guest module;360
19.2.1.11;13.2.1.11 ROV module;360
19.2.1.12;13.2.1.12 Battery packs;361
19.3;13.3 Installation;361
19.4;13.4 Periodic service;362
19.5;13.5 Results;362
19.6;13.6 Discussion;363
19.7;References;363
20;14 Sub-sea environmental observatory integrated with the KM3NeT neutrino telescope infrastructure in the Mediterranean Sea;366
20.1;14.1 Introduction;366
20.1.1;14.1.1 Neutrino astronomy;367
20.2;14.2 Scientific case for a cabled infrastructure in the Mediterranean Sea;368
20.3;14.3 KM3NeT conceptual design;369
20.3.1;14.3.1 Site criteria;371
20.3.2;14.3.2 Water optical properties;372
20.3.2.1;14.3.2.1 Light transmission;372
20.3.2.2;14.3.2.2 Optical background;372
20.3.2.2.1;14.3.2.2.1 Potassium 40;372
20.3.2.2.2;14.3.2.2.2 Bioluminescence;372
20.3.2.3;14.3.2.3 Deep-sea currents;374
20.3.2.4;14.3.2.4 Sedimentation;375
20.3.2.5;14.3.2.5 Biofouling;376
20.3.2.6;14.3.2.6 Distance offshore;377
20.3.3;14.3.3 Scientific opportunities in the Mediterranean Sea;377
20.3.3.1;14.3.3.1 Physical oceanography;379
20.4;14.4 Infrastructure management and operation;381
20.4.1;14.4.1 Neutrino telescope operations;381
20.4.2;14.4.2 Marine science observatory operations;381
20.4.3;14.4.3 Safety requirements;382
20.4.4;14.4.4 Data management and access;383
20.4.5;14.4.5 Public relations and outreach program management;383
20.4.6;14.4.6 Users and stakeholders;383
20.5;14.5 Marine observatory integration in the Mediterranean;384
20.5.1;Acknowledgments;385
20.6;References;385
21;15 ANTARES neutrino telescope and deep-sea observatory;389
21.1;15.1 Introduction;389
21.2;15.2 Science objectives;390
21.3;15.3 Technical description of neutrino telescope and observatory;390
21.3.1;15.3.1 Stages in construction of the detector;390
21.3.2;15.3.2 Design of the neutrino telescope;393
21.3.3;15.3.3 Instrumentation line;396
21.3.3.1;15.3.3.1 ADCP;398
21.3.3.2;15.3.3.2 CTD;399
21.3.3.3;15.3.3.3 Sound velocimeter;400
21.3.3.4;15.3.3.4 Water transmission;400
21.3.3.5;15.3.3.5 Oxygen monitor;401
21.3.3.6;15.3.3.6 Camera;401
21.3.3.7;15.3.3.7 Oceanographic instruments on neutrino telescope lines;403
21.3.3.8;15.3.3.8 Mounting of instruments on lines;403
21.3.4;15.3.4 Other instruments in a deep-sea observatory;403
21.3.4.1;15.3.4.1 Deep-IODA;403
21.3.4.2;15.3.4.2 Seismometer;406
21.3.5;15.3.5 Acoustic positioning system;407
21.3.6;15.3.6 Acoustic detection system;410
21.3.6.1;15.3.6.1 System description;410
21.3.6.2;15.3.6.2 Acoustic sensors;412
21.3.6.3;15.3.6.3 Offshore electronics and acoustic data acquisition;412
21.3.6.4;15.3.6.4 Onshore data processing;413
21.3.6.5;15.3.6.5 Ambient noise measurements;413
21.3.6.6;15.3.6.6 Position reconstruction of sources;414
21.4;15.4 Sample data from ANTARES detector;415
21.4.1;15.4.1 Data available from the neutrino telescope lines;415
21.4.2;15.4.2 Data available from the environment instrumentation in the system;419
21.4.2.1;15.4.2.1 Sea water current;420
21.4.2.2;15.4.2.2 Oceanographic processes in the deep western Mediterranean Sea;420
21.4.2.3;15.4.2.3 Internal waves in the deep western Mediterranean Sea;422
21.4.2.4;15.4.2.4 Temperature;423
21.4.2.5;15.4.2.5 Oxygen dynamics in the deep waters;424
21.4.2.6;15.4.2.6 Pressure sensor;425
21.4.2.7;15.4.2.7 BioCamera;426
21.4.2.8;15.4.2.8 Sound velocity;428
21.5;15.5 Extensions for Marine and Earth science;428
21.5.1;15.5.1 Secondary junction box (SJB) system;428
21.5.2;15.5.2 KM3NeT;432
21.6;15.6 Summary;433
21.7;References;433
22;16 NEPTUNE Canada: Installation and initial operation of the world’s first regional cabled ocean observatory;435
22.1;16.1 Introduction;435
22.2;16.2 History of NEPTUNE Canada;436
22.2.1;16.2.1 Concept design and funding phase;437
22.2.2;16.2.2 Infrastructure design, testing and installation phase;440
22.2.3;16.2.3 Instrument design, testing and installation phase;444
22.3;16.3 Data management and archiving;448
22.4;16.4 Challenges for NEPTUNE Canada;450
22.5;16.5 Future opportunities for NEPTUNE Canada;454
22.6;16.6 Socio-economic benefits of NEPTUNE Canada;454
22.7;16.7 Summary and invitation;455
22.7.1;Acknowledgments;457
22.8;References;457
23;17 The ALOHA cabled observatory;459
23.1;17.1 Introduction;459
23.2;17.2 Background;460
23.3;17.3 Infrastructure;463
23.3.1;17.3.1 Shore station and cable;464
23.3.2;17.3.2 Junction box;464
23.3.3;17.3.3 Power system;465
23.3.4;17.3.4 Observatory module;467
23.3.5;17.3.5 Other system aspects;468
23.4;17.4 Research;468
23.4.1;17.4.1 Research with core measurements;469
23.4.2;17.4.2 Examples of future research directions;476
23.5;17.5 Concluding remarks and epilogue;478
23.5.1;Acknowledgments;480
23.6;References;481
24;18 Next-generation science in the ocean basins: Expanding the oceanographer’s toolbox utilizing submarine electro-optical sensor networks;484
24.1;18.1 A grand challenge;484
24.2;18.2 Ocean complexity – natural laboratories;487
24.2.1;18.2.1 Development of the US undersea cabled observatory;492
24.2.2;18.2.2 Regional scale nodes;493
24.2.3;18.2.3 Regional scale nodes science, instruments and moorings;497
24.2.3.1;18.2.3.1 Ocean processes in the NE Pacific, the regional scale nodes and endurance array;498
24.2.3.2;18.2.3.2 Cascadia subduction earthquakes, methane hydrates and seeps, novel organisms;500
24.2.3.3;18.2.3.3 Linkages among submarine volcanoes, hydrothermal venting, and life in extreme environments: Axial Seamount;505
24.3;18.3 Cabled observatories and amplification with emerging technologies;509
24.4;18.4 Broader potential – cabled human presence in the sea;514
24.5;18.5 Global problems require international solutions;514
24.5.1;Acknowledgments;515
24.6;References;515
25;19 Technical preparation and prototype development for long-term cabled seafloor observatories in Chinese marginal seas;522
25.1;19.1 Introduction;522
25.2;19.2 System design of cabled seafloor observatories;524
25.2.1;19.2.1 Power system;525
25.2.2;19.2.2 Communication system;526
25.2.3;19.2.3 Topology consideration;527
25.3;19.3 Prototype development for cabled seafloor observatories;528
25.3.1;19.3.1 Undersea station;528
25.3.2;19.3.2 Junction box;530
25.3.3;19.3.3 Submarine cable;531
25.3.4;19.3.4 Shore station;532
25.3.5;19.3.5 Reliability engineering;533
25.4;19.4 In-situ scientific instrumentation;534
25.4.1;19.4.1 Scientific Instrument Interface Module (SIIM);534
25.4.2;19.4.2 Chemical Parameter Analyzing System (CPAS);535
25.4.3;19.4.3 Hydrodynamic Environment Monitoring System (HEMS);538
25.5;19.5 East China Sea trials;540
25.6;19.6 MARS sea trials;540
25.7;19.7 Concluding remarks;543
25.7.1;Acknowledgments;544
25.8;References;544
26;20 From ESONET multidisciplinary scientific community to EMSO novel European research infrastructure for ocean observation;549
26.1;20.1 Introduction;550
26.2;20.2 ESONET and EMSO: Synergic framework;552
26.3;20.3 Major ESONET-NoE activities and achievements;553
26.3.1;20.3.1 Demonstration missions and test experiments;553
26.3.1.1;20.3.1.1 AOEM: Arctic Ocean ESONET Mission: A step towards understanding a key area for climate studies;554
26.3.1.2;20.3.1.2 LOOME: Long-term observations on mud-volcano eruptions in the Norwegian margin;555
26.3.1.3;20.3.1.3 MODOO: MOdular Deep Ocean Observatory: The sustained monitoring of the Porcupine Abyssal Plain for studying biogeochemi;555
26.3.1.4;20.3.1.4 MoMAR-D: MOnitoring the Mid-Atlantic Ridge Lucky Strike vent field (off Azores);556
26.3.1.5;20.3.1.5 LIDO: LIstening to the Deep-Ocean environment with a regional network of multidisciplinary seafloor observatories;557
26.3.1.6;20.3.1.6 MARMARA-DM: Looking for a relationship between gas seepage and seismicity in the Marmara Sea (Istanbul Supersite);558
26.3.1.7;20.3.1.7 Ligurian Sea: Biochemical process of the water column and slope instability monitoring;559
26.3.2;20.3.2 Underwater operation and best practices;559
26.4;20.4 Sustained European-scale ocean observations through EMSO infrastructure;561
26.4.1;20.4.1 Present status of the EMSO nodes;563
26.4.1.1;20.4.1.1 Arctic;563
26.4.1.2;20.4.1.2 Porcupine Abyssal Plain (PAP);564
26.4.1.3;20.4.1.3 Azores Islands;564
26.4.1.4;20.4.1.4 Canary Archipelago PLOCAN;565
26.4.1.5;20.4.1.5 Ligurian Sea;566
26.4.1.6;20.4.1.6 Western Ionian Sea;566
26.4.1.7;20.4.1.7 Hellenic Arc;567
26.4.1.8;20.4.1.8 Marmara Sea;568
26.4.1.9;20.4.1.9 Black Sea;568
26.4.2;20.4.2 EMSO data infrastructure;569
26.4.2.1;20.4.2.1 Data management principles;570
26.4.2.2;20.4.2.2 Interoperability of observatory metadata and sensors;573
26.5;20.5 Conclusions and perspectives;574
26.5.1;Acknowledgments;576
26.6;References;576
26.7;Websites;579
27;Part IV Relevant scientific results with a multidisciplinary emphasis;582
28;21 Seafloor observatory for monitoring hydrologic and geological phenomena associated with seismogenic subduction zones;583
28.1;21.1 Introduction;583
28.2;21.2 Geophysical and geological settings at the ACORK stations;585
28.3;21.3 Freshening observed at the décollement;589
28.4;21.4 Methane hydrate in accretionary prism;590
28.5;21.5 Formation pressure observations;592
28.6;21.6 Discussion;593
28.7;21.7 Summary;595
28.7.1;Acknowledgments;595
28.8;References;595
29;22 Modeling of regional geomagnetic field based on ground observation network including seafloor geomagnetic observatories;600
29.1;22.1 Introduction;600
29.2;22.2 Potential theory;602
29.3;22.3 Spherical cap harmonics – 2D case;604
29.4;22.4 Regional geomagnetic reference field – A case study;606
29.4.1;22.4.1 Data;606
29.4.2;22.4.2 Synthetic inversion;607
29.4.3;22.4.3 The regional geomagnetic reference field over the Western Pacific;609
29.5;22.5 Discussion;610
29.6;22.6 Conclusions;611
29.6.1;Acknowledgments;612
29.7;References;612
30;23 Seafloor borehole observatories in the Northwestern Pacific;615
30.1;23.1 Introduction;615
30.2;23.2 Seafloor borehole geophysical observatories;617
30.3;23.3 Geophysical records and results from the seafloor borehole observatories;622
30.3.1;23.3.1 Geodetic records;622
30.3.2;23.3.2 Seismological records;622
30.3.3;23.3.3 Earth structure from the deep-sea borehole observatories;629
30.4;23.4 Seafloor cabled observatories;631
30.5;23.5 Conclusions;632
30.5.1;Acknowledgments;632
30.6;References;632
31;24 A first insight into the Marsili volcanic seamount (Tyrrhenian Sea, Italy): Results from ORION-GEOSTAR3 experiment;637
31.1;24.1 Introduction;637
31.2;24.2 Geological setting;638
31.3;24.3 The ORION experiment;640
31.4;24.4 Data analysis;643
31.4.1;24.4.1 Seismometer and gravimeter data;643
31.4.2;24.4.2 Magnetic data;650
31.5;24.5 Conclusions;651
31.5.1;Acknowledgments;652
31.6;References;652
32;25 Development and application of an advanced ocean floor network system for megathrust earthquakes and tsunamis;656
32.1;25.1 Introduction;656
32.2;25.2 Previous research;660
32.3;25.3 Configuration of DONET;662
32.4;25.4 Expected results;665
32.5;25.5 Summary and future plans;672
32.5.1;Acknowledgments;673
32.6;References;673
33;26 Concluding Remarks: Perspectives and longterm vision;676
33.1;26.1 Vision;676
33.2;26.2 Visionaries and progress;677
33.3;26.3 Challenges;677
33.4;26.4 Public safety;678
33.5;26.5 Paradigm shift;678
33.6;26.6 Historical significance;678
34;Acknowledgments;680
34.1;List of the referees in alphabetical order;680
35;Index;683




