E-Book, Englisch, Band 135, 343 Seiten
Favorskaya / Jain Computer Vision in Control Systems-3
1. Auflage 2018
ISBN: 978-3-319-67516-9
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
Aerial and Satellite Image Processing
E-Book, Englisch, Band 135, 343 Seiten
Reihe: Intelligent Systems Reference Library
ISBN: 978-3-319-67516-9
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;7
3;About the Editors;12
4;1 Theoretical and Practical Solutions in Remote Sensing;14
4.1;Abstract;14
4.2;1.1 Introduction;14
4.3;1.2 Chapters Included in the Book;15
4.4;1.3 Conclusions;20
4.5;References;20
5;2 Multidimensional Image Models and Processing;23
5.1;Abstract;23
5.2;2.1 Introduction;24
5.3;2.2 Mathematical Models of Images;26
5.3.1;2.2.1 Random Fields;26
5.3.2;2.2.2 Tensor Models of Random Fields;27
5.3.3;2.2.3 Autoregressive Models of Random Fields;30
5.3.4;2.2.4 Wave Models of Random Fields;37
5.3.5;2.2.5 Random Fields on Surfaces;40
5.4;2.3 Image Filtering;44
5.4.1;2.3.1 Efficiency of Optimal Image Filtering;45
5.4.2;2.3.2 Tensor Kalman Filter;47
5.5;2.4 Anomalies Detection in Noisy Background;49
5.5.1;2.4.1 Optimal Algorithms for Signal Detection;50
5.5.2;2.4.2 Efficiency of Anomaly Detection;54
5.6;2.5 Image Alignment;57
5.6.1;2.5.1 Tensor Shift Filtering;57
5.6.2;2.5.2 Random Field Alignment of Images with Interframe Geometric Transformation;59
5.6.3;2.5.3 Alignment of Two Frames of Gaussian Random Field;60
5.6.4;2.5.4 Method of Fixed Point at Frame Alignment;63
5.7;2.6 Adaptive Algorithms of Image Processing;67
5.7.1;2.6.1 Pseudo-Gradient Adaptive Algorithms;68
5.7.2;2.6.2 Pseudo-Gradient Adaptive Prediction Algorithms;71
5.7.3;2.6.3 Pseudo-Gradient Algorithms of Image Alignment;73
5.8;2.7 Conclusions;74
5.9;Acknowledgements;75
5.10;References;75
6;3 Vision-Based Change Detection Using Comparative Morphology;77
6.1;Abstract;77
6.2;3.1 Introduction;78
6.3;3.2 Related Works;79
6.4;3.3 Methodology;81
6.4.1;3.3.1 Comparative Morphology as a Generalized Scheme of Morphological Image Analysis;82
6.4.2;3.3.2 Comparative Filtering as a Generalization of Morphological Filtering;84
6.4.3;3.3.3 Comparative Filters Based on Guided Contrasting;86
6.4.4;3.3.4 Manifold Learning, Diffusion Maps and Shape Matching;88
6.4.5;3.3.5 Generalized Diffusion Morphology and Comparative Filters Based on Diffusion Operators;91
6.4.6;3.3.6 Image and Shape Matching Based on Diffusion Morphology;94
6.4.7;3.3.7 Change Detection Pipeline Based on Comparative Filtering;96
6.5;3.4 Experiments;98
6.5.1;3.4.1 Qualitative Change Detection Experiments;98
6.5.2;3.4.2 Quantitative Change Detection Experiments;99
6.6;3.5 Conclusions;103
6.7;Acknowledgements;103
6.8;References;104
7;4 Methods of Filtering and Texture Segmentation of Multicomponent Images;109
7.1;Abstract;109
7.2;4.1 Introduction;110
7.3;4.2 Method for Nonlinear Multidimensional Filtering of Images;111
7.3.1;4.2.1 Mathematical Model of Multispectral Images;112
7.3.2;4.2.2 Nonlinear Multidimensional Filtering;114
7.4;4.3 Method of Texture Segmentation;122
7.5;4.4 Conclusions;128
7.6;References;129
8;5 Extraction and Selection of Objects in Digital Images by the Use of Straight Edges Segments;131
8.1;Abstract;131
8.2;5.1 Introduction;132
8.3;5.2 Related Works;133
8.4;5.3 Problem Statement and Method of Solution;136
8.4.1;5.3.1 Problem Statement and Tasks;136
8.4.2;5.3.2 Image Processing Structure;136
8.4.3;5.3.3 Advanced Algorithm of Straight Edge Segments Extraction;138
8.4.4;5.3.4 Lines Grouping Algorithms for Object Description and Selection;141
8.5;5.4 Modelling of Straight Edge Segments Extraction;143
8.6;5.5 Modelling of Segment Grouping and Object Detection, Selection and Localization;146
8.7;5.6 Experimental Results for Aerial, Satellite and Radar Images;149
8.8;5.7 Conclusions;155
8.9;Acknowledgements;157
8.10;References;157
9;6 Automated Decision Making in Road Traffic Monitoring by On-board Unmanned Aerial Vehicle System;160
9.1;Abstract;160
9.2;6.1 Introduction;161
9.3;6.2 Algorithm for Classification of Road Traffic Situation;163
9.4;6.3 Alphabet Forming for Description of Situation Class;164
9.5;6.4 Detection of Scene Objects;166
9.6;6.5 Forming Observed Scene Descriptions;170
9.7;6.6 Decision Making Procedure;174
9.8;6.7 Use of Statistical Criteria for Decision Making;175
9.9;6.8 Use of Functional Criteria Model;178
9.10;6.9 Examples;181
9.11;6.10 Conclusions;184
9.12;References;184
10;7 Warping Techniques in Video Stabilization;187
10.1;Abstract;187
10.2;7.1 Introduction;187
10.3;7.2 Development of Warping Techniques;189
10.4;7.3 Related Works;191
10.4.1;7.3.1 Overview of Warping Techniques in 2D Stabilization;191
10.4.2;7.3.2 Overview of Warping Techniques in 3D Stabilization;193
10.4.3;7.3.3 Overview of Inpainting Methods for Boundary Completion;197
10.5;7.4 Scene Classification;199
10.5.1;7.4.1 Extraction of Key Frames;199
10.5.2;7.4.2 Estimation of Scene Depth;201
10.6;7.5 3D Warping During Stabilization;202
10.6.1;7.5.1 Extraction of Structure from Motion;203
10.6.2;7.5.2 3D Camera Trajectory Building;205
10.6.3;7.5.3 Warping in Scenes with Small Depth;206
10.6.4;7.5.4 Warping Using Geometrical Primitives;207
10.6.5;7.5.5 Local 3D Warping in Scenes with Large Depth;210
10.7;7.6 Warping During Video Inpainting;213
10.8;7.7 Experimental Results;218
10.9;7.8 Conclusions;221
10.10;Acknowledgements;222
10.11;References;222
11;8 Image Deblurring Based on Physical Processes of Blur Impacts;226
11.1;Abstract;226
11.2;8.1 Introduction;227
11.3;8.2 Overview of Blur and Deblurring Methods;228
11.4;8.3 Model of Linear Blur Formation;237
11.4.1;8.3.1 Discrete-Analog Representation of Illumination;237
11.4.2;8.3.2 Small Linear Blur;239
11.4.3;8.3.3 Large Linear Blur;246
11.5;8.4 Non-linear Blur;250
11.6;8.5 Conclusions;257
11.7;References;257
12;9 Core Algorithm for Structural Verification of Keypoint Matches;260
12.1;Abstract;260
12.2;9.1 Introduction;261
12.3;9.2 Overview of Keypoint-Based Methods;262
12.4;9.3 Notation;264
12.5;9.4 Training Datasets;268
12.6;9.5 Algorithms of Primary Outlier Elimination;269
12.6.1;9.5.1 Nearest Neighbour Ratio Test;269
12.6.2;9.5.2 Crosscheck;270
12.6.3;9.5.3 Exclusion of Ambiguous Matches;270
12.6.4;9.5.4 Comparison and Conclusion;272
12.7;9.6 Geometrical Verification of Matches;273
12.7.1;9.6.1 Hough Clustering of Keypoint Matches;273
12.7.2;9.6.2 Verification of Cluster Hypotheses;278
12.8;9.7 Confidence Estimation;282
12.9;9.8 Application for Practical Tasks;284
12.9.1;9.8.1 Matching of Images of 3D Scenes;285
12.9.2;9.8.2 Image Retrieval Using Bag of Words;286
12.9.3;9.8.3 Registration of Aerospace Images;289
12.10;9.9 Conclusions;292
12.11;Acknowledgements;292
12.12;References;292
13;10 Strip-Invariants of Double-Sided Matrix Transformation of Images;296
13.1;Abstract;296
13.2;10.1 Introduction;297
13.3;10.2 Double-Sided Matrix Transformation of Images;298
13.4;10.3 Invariant Images (Problem Statement);301
13.5;10.4 Analysis of Strip-Invariant Images;307
13.5.1;10.4.1 Existence Criteria of Strip-Invariant Images for Case m = n, A = B;307
13.5.2;10.4.2 Renunciation of Matrices Equality Condition A = B;316
13.5.3;10.4.3 Abandonment of Conditions of Symmetry and Orthogonality of Matrices A and B;319
13.6;10.5 Getting Invariant Images Using Eigenvectors of Matrices;321
13.7;10.6 Synthesis of Matrices by Given Invariant Images;325
13.8;10.7 Conclusions;327
13.9;References;327
14;11 The Fibonacci Numeral System for Computer Vision;329
14.1;Abstract;329
14.2;11.1 Introduction;330
14.3;11.2 Fibonacci Numbers;333
14.4;11.3 Fibonacci Numbers and Fibonacci Codes;334
14.5;11.4 Minimal and Maximum Representation Forms for Fibonacci Numbers;336
14.5.1;11.4.1 Estimate of the Noise Immunity of the Fibonacci Codes in Their Minimal Form;337
14.5.2;11.4.2 Noise-Proof Fibonacci Counting;343
14.6;11.5 Decoding the Fibonacci Combinations in the Minimal Representation Form;346
14.7;11.6 Conclusions and Future Research;350
14.8;Acknowledgements;351
14.9;References;351




