E-Book, Englisch, Band 44, 408 Seiten
Reihe: Subcellular Biochemistry
Flohé / Harris Peroxiredoxin Systems
1. Auflage 2007
ISBN: 978-1-4020-6051-9
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark
Structures and Functions
E-Book, Englisch, Band 44, 408 Seiten
Reihe: Subcellular Biochemistry
ISBN: 978-1-4020-6051-9
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;7
2;List of contributors;9
3;Preface;13
4;1 Introduction;15
4.1;Leopold Flohé and J. Robin Harris;15
4.1.1;1. From Early Discoveries to the Emergence of An Ubiquitous Protein Family;15
4.1.2;2. Discovery of the Peroxidase Activity of Peroxiredoxins;18
4.1.3;3. Antioxidant Defence;21
4.1.4;4. Peroxide-Linked Redox Signalling;22
4.1.5;5. Possible Membrane-Association;24
4.1.6;6. Structure;25
4.1.6.1;6.1. Characterization;25
4.1.6.2;6.2. Transmission Electron Microscopy;26
4.1.6.3;6.3. X-ray Crystallography;28
4.1.7;7. Medical Perspectives;29
4.1.8;References;31
5;2. Evolution of the Peroxiredoxins;40
5.1;Bernard Knoops, Eléonore Loumaye and Valérie Van Der Eecken;40
5.1.1;1. Introduction;40
5.1.2;2. Classification of Peroxiredoxins;44
5.1.3;3. Peroxiredoxins in Prokaryotes;46
5.1.4;4. Peroxiredoxins in Archaea;47
5.1.5;5. Peroxiredoxins in Eukaryotes;47
5.1.5.1;5.1. Yeast (saccharomyces cerevisiae);47
5.1.5.2;5.2. Protozoa;47
5.1.5.3;5.3. Plants;48
5.1.5.4;5.4. Animals;48
5.1.6;Acknowledgments;50
5.1.7;References;50
6;3. Structural survey of the Peroxiredoxins;54
6.1;P. Andrew Karplus and Andrea Hall;54
6.1.1;1. Scope and Purpose;54
6.1.2;2. Introduction;57
6.1.3;3. Universal Features of the Prx Catalytic Cycle;57
6.1.4;4. Summary of Structural Investigations;59
6.1.5;5. Structural Features Common to all Prxs;59
6.1.5.1;5.1. Overall Structure;59
6.1.6;6. Features Varying Between Prx Subfamilies;64
6.1.6.1;6.1. Quaternary Structures;64
6.1.6.2;6.2. Variations in the Presence and Placement of the Resolving Cys;66
6.1.7;Acknowledgements;71
6.1.8;References;71
7;4. The Catalytic Mechanism of Peroxiredoxins;74
7.1;Leslie B. Poole;74
7.1.1;1. Introduction;74
7.1.2;2. Catalysis of the Peroxide Reduction Step;75
7.1.2.1;2.1. Reaction at the Critical Cysteine Residue;75
7.1.2.2;2.2. Other Active Site Residues Participating in Catalysis;77
7.1.2.3;2.3. Substrate Specificity Studies;78
7.1.3;3. Residues Conserved Among Specific Groups of Prxs with Possible Roles in Catalysis;80
7.1.4;4. Steps in Catalysis Beyond Cysteine Sulfenic Acid Formation: Reduction and Overoxidation;82
7.1.4.1;4.1. Distinctions between 1-Cys and 2-Cys Peroxidatic Mechanisms;82
7.1.4.2;4.2. Reductive Recycling of Prxs;83
7.1.4.3;4.3. Oxidative Inactivation of Prxs during Turnover;84
7.1.5;5. Interplay Between Oligomeric State, Catalysis and Inactivation During Turnover in Typical 2-Cys Prxs;86
7.1.6;6. Conclusions;89
7.1.7;Acknowledgements;89
7.1.8;References;89
8;5. Kinetics of Peroxiredoxins and their Role in the Decomposition of Peroxynitrite;95
8.1;Madia Trujillo, Gerardo Ferrer-Sueta, Leonor Thomson,;95
8.2;1. Introduction;96
8.3;2. General Approaches to Study Peroxiredoxin Kinetics;98
8.3.1;2.1. Steady-state Kinetic Analysis;99
8.3.2;2.2. Pre-steady State Approaches;109
8.4;3. The Special Case: Peroxynitrite;112
8.4.1;3.1. Biochemistry of Peroxynitrite;112
8.4.2;3.2. Pre-steady State Kinetics: Determining the Kineticsof Peroxynitrite-mediated Peroxiredoxin Oxidation, DirectInitial Rate and Competition Approaches;113
8.4.3;3.3. Steady State Approach: Peroxynitrite Reductase Activitiesof Peroxiredoxins;117
8.4.4;3.4. Peroxiredoxins Catalytically Detoxify Peroxynitrite Formedfrom Fluxes of NO and O2 ;117
8.5;4. Relevance of Peroxiredoxin-Catalyzed Peroxynitrite Detoxification;119
8.6;Acknowledgements ;121
8.7;References;121
9;6 The Peroxiredoxin Repair Proteins;126
9.1;Thomas J. Jönsson and W. Todd Lowther;126
9.1.1;1. Introduction;126
9.1.2;2. The Hyperoxidation of Peroxiredoxins;127
9.1.3;3. Retroreduction of Typical 2-Cys Peroxiredoxins;128
9.1.3.1;3.1. Discovery and Initial Characterization of Sulfiredoxin;129
9.1.4;4. Distribution of Prx Repair Enzymes;131
9.1.4.1;4.1. Prx Oxidation Susceptibility and Repair Correlations;131
9.1.4.2;4.2. Tissue Distribution;132
9.1.4.3;4.3. Conservation of Srx;132
9.1.5.1;5.1. Novel Protein Fold and Nucleiotide-binding Motif;134
9.1.6;6. Catalytic Properties of Srx;139
9.1.6.1;6.1. Cofactor Requirements and Catalytic Efficiency;139
9.1.6.2;6.2. Substrate Specificity and Mutational Analysis;139
9.1.6.3;6.3. Exploring the Reaction Mechanism;141
9.1.7;7. Importance of Srx in Cell Signalling and Defense;143
9.1.7.1;7.1. Prx-dependent Peroxide Sensing in Schizosaccharomyces pombe;143
9.1.7.2;7.2. Src and Chloroplast Protection;144
9.1.7.3;7.3. Srx and Modulation of Prx Chaperone Function;145
9.1.7.4;7.4. Srx and (De)glutathionylation Phenomena;147
9.1.8;8. Conclusions;148
9.1.9;Acknowledgements;148
9.1.10;References;148
10;7. Peroxiredoxins in Bacterial Antioxidant Defense;153
10.1;James M. Dubbs and Skorn Mongkolsuk;153
10.1.1;1. Introduction;153
10.1.2;2. Bacterial Alkylhydroperoxidase: AhpC;156
10.1.2.1;2.1. OxyR Mediated Regulation of AhpC;158
10.1.2.2;2.2. PerR Mediated Regulation of AhpC;165
10.1.2.3;2.3. HypR Mediated Regulation of AhpC;168
10.1.2.4;2.4. AhpC Systems of Indeterminate Regulatory Mechanism;169
10.1.2.5;2.5. Physiological Role of AhpC;173
10.1.3;3. Tpx: Thiol Preoxidase;179
10.1.3.1;3.1. Tpx Structure and Biochemistry;179
10.1.4;4. Ohr/OsmC Peroxiredoxin Family;183
10.1.4.1;4.1. Ohr (Organic Hydroperoxide Resistance) Structure and Biochemistry;183
10.1.4.2;4.2. Osmotically Inducible Protein: OsmC;188
10.1.5;5. Conclusion;192
10.1.6;Acknowledgements;193
10.1.7;References;193
11;8. The NADH Oxidase-Prx System in Amphibacillus Xylanus;204
11.1;Youichi Niimura;204
11.1.1;1. Introduction;204
11.1.2.1;2.1. Reaction Mechanism of Hydrogen Peroxide Reduction;206
11.1.2.3;2.3. Supramolecular Organization of the System;208
11.1.3;3. Physiological Role of the NADH Oxidase-Prx System;210
11.1.4;4. Conclusions;212
11.1.5;Acknowledgments;212
11.1.6;References;213
12;9. Peroxiredoxin Systems in Mycobacteria;215
12.1;Timo Jaeger;215
12.1.1;1. Introduction;215
12.1.2;2. Mycobacterial Peroxiredoxins;216
12.1.3;2.1. Alkyl Hydroperoxide Reductase (AhpC);216
12.1.4;2.2. Thioredoxin Peroxidase (TPx);218
12.1.5;2.3. Other Peroxiredoxins in Mycobacteria;220
12.1.6;3. Reduction of Thioredoxins;220
12.1.7;4. Potential Impact for Drug Discovery;221
12.1.8;References;222
13;10. Peroxiredoxin Systems of Protozoal Parasites;226
13.1;Marcel Deponte, Stefan Rahlfs and Katja Becker;226
13.1.1;1. Introduction;226
13.1.2;2. Targeting Redox Metabolism in Protozoal Parasites;227
13.1.2.1;2.1. Complete Lack or Substitution of One or More Componentsof the Redox System;228
13.1.2.2;2.2. Differences in the Number and/or the Substrate Specificityof Similar Enzymes;228
13.1.2.3;2.3. Different Properties of Isofunctional Homologous Proteins;229
13.1.3;3. Properties of Plasmodium Peroxiredoxins;229
13.1.3.1;3.1. Thioredoxin Peroxidase 1 (TPx-1);230
13.1.3.2;3.2. Thioredoxin Peroxidase 2 (TPx-2);231
13.1.3.3;3.3. Antioxidant Protein (AOP);232
13.1.3.4;3.4. 1-Cys Peroxiredoxin (1-Cys-Prx);232
13.1.4;4. Future Perspectives;234
13.1.5;Acknowledgements;234
13.1.6;References;234
14;11. The Trypanothione System;237
14.1;Luise R. Krauth-Siegel, Marcelo A. Comini and Tanja Schlecker;237
14.1.1;1. Introduction;237
14.1.2;2. The Parasite Specific Dithiol Trypanothione;238
14.1.2.1;2.1. Occurrence and Biosynthesis of Trypanothione;238
14.1.2.2;2.2. Trypanothione is more than Twice Glutathione;239
14.1.2.3;2.3. The Trypanothione/Tryparedoxin Couple in the RedoxMetabolism of Trypanosomatids;240
14.1.3;3. Trypanothione/Tryparedoxin- Dependent 2-Cys-Peroxiredoxins (Tryparedoxin Peroxidases);241
14.1.3.1;3.1. On the Diversity of Tryparedoxin Peroxidases in Trypanosomatids;241
14.1.3.2;3.2. Specificity and Efficiency of the Tryparedoxin Peroxidases;244
14.1.3.3;3.3. Catalytic Mechanism of the Trypanosomatid 2-Cys-peroxiredoxins;245
14.1.3.4;3.4. Three-dimensional Structures of Tryparedoxin Peroxidases;247
14.1.3.5;3.5. The Tryparedoxin Peroxidases are Resistance and MetastasisFactors and are Essential for the Parasites;249
14.1.4;4. Other Trypanothione-Dependent Perox.Idases;250
14.1.5;4.1. Glutathione Peroxidase-type Tryparedoxin Peroxidases;250
14.1.6;4.2. Ascorbate-dependent Peroxidases;251
14.1.7;Acknowledgements;252
14.1.8;References;252
15;12. Functions of Typical 2-Cys Peroxiredoxins in Yeast;258
15.1;Brian A. Morgan and Elizabeth A. Veal;258
15.1.1;1. Introduction;258
15.1.2;2. Typical 2-Cys Prxs and Signal Transduction;259
15.1.2.1;2.1. Regulation of H2O2-induced Activation of the Yap1 TranscriptionFactor in S. cerevisiae;260
15.1.2.2;2.2. Regulation of H2O2-induced Gene Expression in S. pombe;261
15.1.3;3. Typical 2-Cys Prx Act as Molecular Chaperones in S. Cerevisiae;265
15.1.4;4. Typical 2-Cys Prx and the Response to Dna Damage;266
15.1.5;5. Functions of Typical 2-Cys Prx in Other Yeasts;266
15.1.5.1;5.1. Typical 2-Cys Prx in Candida albicans;266
15.1.5.2;5.2. Typical 2-Cys Prx in Cryptococcus neoformans;267
15.1.6;6. Conclusions and Perspectives;268
15.1.7;Acknowledgements;268
15.1.8;References;268
16;13 The Dual Function of Plant Peroxiredoxins in Antioxidant Defence and Redox Signaling;271
16.1;Karl-Josef Dietz;271
16.1.1;1. Introduction;271
16.1.2;2. The Principle Types of Peroxiredoxins Based on their Biochemical Properties;274
16.1.2.1;2.1. Plant Prx Classification;274
16.1.2.2;2.2. The Gene Family of Peroxiredoxins in Plants and Cyanobacteria;275
16.1.3;3. Catalytic Function and Regeneration of Plant Prx;276
16.1.3.1;3.1. Peroxide Substrates of Peroxiredoxins;276
16.1.3.2;3.3. Reduction of PrxQ;280
16.1.3.3;3.4. 1-Cys Prx;281
16.1.3.4;3.5. PrxII;281
16.1.4;4. Transcript Regulation of Prx-Genes and~Protein~Accumulation;281
16.1.4.1;4.1. Tissue Specificity of Expression;282
16.1.4.2;4.2. Transcript Regulation in Mutants and under Oxidative StressDeduced from Array Hybridisations;282
16.1.4.3;4.3. Transcript Regulation under Abiotic Stresses;283
16.1.4.4;4.4. Regulation in Response to Pathogen Infection;285
16.1.4.5;4.5. Effector Studies;286
16.1.5;5. Plant Prx in Photosynthesis;288
16.1.5.1;5.1. Peroxiredoxins in Cyanobacterial Photosynthesis;288
16.1.5.2;5.2. Peroxiredoxins in Plant Photosynthesis;288
16.1.6;6. Prx in Plant Development;289
16.1.7;7. Plant Peroxiredoxins in Signaling and Outlook;291
16.1.8;Acknowledgements;293
16.1.9;References;293
17;14. Mitochondrial Peroxiredoxins;299
17.1;Zhenbo Cao, J. Gordon Lindsay and Neil W. Isaacs;299
17.1.1;1. Introduction;299
17.1.1.1;1.1. Mitochondria;299
17.1.1.2;1.2. Oxidative Stress;300
17.1.2.3;2.3. Protein Oxidative Damage;302
17.1.2.4;2.4. The Role of Oxidative Stress in Disease;303
17.1.2.5;2.5. Mitochondrial Antioxidant Defence Systems;304
17.1.2.6;2.6. Mitochondrial Thioredoxin and Thioredoxin Reductase;305
17.1.3;3. Mitochondrial Prxs;307
17.1.3.1;3.1. PrxIII;307
17.1.3.2;3.2. PrxV;307
17.1.4;4. Structure and Catalytic Mechanism of Prxiii and Prx V;308
17.1.4.1;4.1. PrxIII;308
17.1.6;6. Concluding Remarks;313
17.1.7;References;315
18;15. Peroxiredoxins in the Lung with Emphasis on~Peroxiredoxin VI;320
18.1;Bruno Schremmer, Yefim Manevich, Sheldon I. Feinstein and Aron B. Fisher;320
18.1.1;1. Introduction;321
18.1.2;2. Distribution, Development and Regulation of Prx in the Lung;322
18.1.2.1;2.1. Distribution;322
18.1.2.2;2.2. Developmental Regulation;324
18.1.2.3;2.3. Regulation of Expression in the Mature Lung;324
18.1.3;3. The Peroxidase Activity of Prx VI;325
18.1.3.1;3.1. The Electron Donor for Prx VI;326
18.1.3.2;3.2. Substrate Specificity of Prx VI;328
18.1.3.3;3.3. Structural Determinants for Enzymatic Activity;329
18.1.4;4. Antioxidant Function of Prx VI in the Lung;331
18.1.4.1;4.1. Cellular Models of Altered Prx VI Expression;334
18.1.4.2;4.2. Animal Models of Altered Prx VI Expression;335
18.1.5;5. Phospholipase A 2 Activity of Prx VI;336
18.1.5.1;5.1. Overview of Surfactant Physiology;336
18.1.5.2;5.2. Properties of Prx VI as a Phospholipase A2;336
18.1.5.3;5.3. Structural Determinants for Phospholipase Activi;337
18.1.5.4;5.4. Prx VI and Surfactant Phospholipid Metabolism;338
18.1.6;6. Peroxiredoxins in Lung Disease;340
18.1.6.1;6.1. Acute Lung Injury;340
18.1.6.2;6.2. Lung Cancer;340
18.1.6.3;6.3. Mesothelioma;341
18.1.6.4;6.4. Sarcoidosis;341
18.1.7;7. Conclusions and Speculation;342
18.1.8;Acknowledgements;342
18.1.9;References;342
19;16. Peroxiredoxins in Gametogenesis and Embryo Development;348
19.1;Isabelle Donnay and Bernard Knoops;348
19.1.1;1. Gametes and Gonads;348
19.1.1.1;1.1. Testis and Sperm;348
19.1.1.2;1.2. Ovaries and Oocytes;350
19.1.2;2. Embryo;352
19.1.2.1;2.1. Preimplantation Embryo;352
19.1.2.2;2.2. Post-implantation Embryo;353
19.1.2.3;2.3. Placenta;354
19.1.2.4;2.4. Perinatal Period;354
19.1.3;3. Insects;355
19.1.4;4. Conclusion;355
19.1.5;Acknowledgments;355
19.1.6;References;356
20;17. Peroxiredoxins in the Central Nervous System;359
20.1;Fumiyuki Hattori and Shinzo Oikawa;359
20.1.1;1. Introduction: Oxidative Stress and the Nervous System;359
20.1.1.1;1.1. Alzheimer’s Disease (AD);359
20.1.1.2;1.2. Parkinson’s Disease (PD);360
20.1.1.3;1.3. Amyotrophic Lateral Sclerosis (ALS);360
20.1.1.4;1.4. Stroke;361
20.1.1.5;1.5. Excitotoxicity;361
20.1.2;2. Expression of Peroxiredoxin/Thioredoxin Reductase System in the Nervous System;362
20.1.2.1;2.1. Basal Expression of Prxs in the CNS;362
20.1.2.2;2.2. Basal Expression of Trxs in the CNS;363
20.1.2.3;2.3. Basal Expression of Thiredoxin Reductases in the CNS;364
20.1.2.4;2.4. Prxs Induction and Reduction in the CNS;364
20.1.2.5;2.5. Altered Expression of Prxs in Neurodegenerative Diseases;364
20.1.2.6;2.6. Trx Induction in the CNS;365
20.1.2.7;2.7. Altered Expression of Trx and TrxR in NeurodegenerativeDiseases;368
20.1.2.8;2.8. Neuroprotective Effects of Transgenic TrxI Expression;370
20.1.2.9;2.9. PrxI-presenilin-1 Interactions;371
20.1.2.10;2.10. Prx-mediated Neuroprotection;371
20.1.3;3. Concluding Remarks and Perspectives;372
20.1.4;References;372
21;18. Stress-Induced Peroxiredoxins;377
21.1;Tetsuro Ishii And Toru Yanagawa;377
21.1.1;1. Introduction;377
21.1.2;2. Activation of Prx I Gene Expression;378
21.1.2.1;2.1. Prx I gene Activation by Stress Agents in Macrophages;378
21.1.2.2;2.2. Role of the Nrf2 and Keap1 System in the Induction of Prx IExpression by Electrophiles;379
21.1.2.3;2.3. Effects of Heme on the Expression and Activity of Prx I;380
21.1.2.4;2.4. Regulation of the Prx I Expression Levels by Serum or TPA;381
21.1.2.5;2.5. Signaling Pathways Leading to Prx I Gene Expression by Arsenic;381
21.1.2.6;2.6. Effects of Oxidative Stress on the Expression of Prx I in the Lung;382
21.1.2.7;2.7. Activation of Prx I gene Expression in Vivo by Dietary BHA;383
21.1.3;3. Stress Induction of Other Prxs;383
21.1.3.1;3.1. Stress Induction of Prx III;383
21.1.3.2;3.2. Activation of Prx II Gene Expression by Radiation;384
21.1.4;4. Conclusions;384
21.1.5;Acknowledgments;384
21.1.6;References;384
22;Index;387
23;Color Plates;392




