Flohé / Harris | Peroxiredoxin Systems | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 44, 408 Seiten

Reihe: Subcellular Biochemistry

Flohé / Harris Peroxiredoxin Systems

Structures and Functions
1. Auflage 2007
ISBN: 978-1-4020-6051-9
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark

Structures and Functions

E-Book, Englisch, Band 44, 408 Seiten

Reihe: Subcellular Biochemistry

ISBN: 978-1-4020-6051-9
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark



A volume within the Subcellular Biochemistry series is an appropriate setting for the first multi-author book devoted to the new family of antioxidant and cell signalling proteins, the peroxiredoxins. Within the antioxidant and cell signalling fields, even the existence of the peroxiredoxins has yet to be appreciated by many; with this book we aim to rectify this situation. We have tried to select diverse chapter topics to cover relevant aspects of the subject and to persuade knowledgeable authors to contribute a manuscript. As almost inevitable, a few authors let us down by failing to respond, others could not submit a manuscript in time for personal reasons. These unfortunately were two of the pioneers, Earl Stadtman and Sue Goo Rhee, but we appreciate that they communicated a lot of details that helped us to reconstruct the early phase of peroxiredoxin enzymology. We have thus compiled a book that competently covers the peroxiredoxin field from its beginnings through to currently relevant topics. In the introductory Chapter 1 we provide a short historical survey of the subject, based upon the early structural and enzymic studies on peroxiredoxins, and then lead into some of our current personal interests, such as the likely continuing contribution of transmission electron microscopy (TEM) for the study of high molecular mass peroxiredoxin complexes and the association of peroxiredoxins with other proteins, and the targeting of drugs against microbial peroxiredoxins, as future therapeutic approaches.

Flohé / Harris Peroxiredoxin Systems jetzt bestellen!

Weitere Infos & Material


1;Contents;7
2;List of contributors;9
3;Preface;13
4;1 Introduction;15
4.1;Leopold Flohé and J. Robin Harris;15
4.1.1;1. From Early Discoveries to the Emergence of An Ubiquitous Protein Family;15
4.1.2;2. Discovery of the Peroxidase Activity of Peroxiredoxins;18
4.1.3;3. Antioxidant Defence;21
4.1.4;4. Peroxide-Linked Redox Signalling;22
4.1.5;5. Possible Membrane-Association;24
4.1.6;6. Structure;25
4.1.6.1;6.1. Characterization;25
4.1.6.2;6.2. Transmission Electron Microscopy;26
4.1.6.3;6.3. X-ray Crystallography;28
4.1.7;7. Medical Perspectives;29
4.1.8;References;31
5;2. Evolution of the Peroxiredoxins;40
5.1;Bernard Knoops, Eléonore Loumaye and Valérie Van Der Eecken;40
5.1.1;1. Introduction;40
5.1.2;2. Classification of Peroxiredoxins;44
5.1.3;3. Peroxiredoxins in Prokaryotes;46
5.1.4;4. Peroxiredoxins in Archaea;47
5.1.5;5. Peroxiredoxins in Eukaryotes;47
5.1.5.1;5.1. Yeast (saccharomyces cerevisiae);47
5.1.5.2;5.2. Protozoa;47
5.1.5.3;5.3. Plants;48
5.1.5.4;5.4. Animals;48
5.1.6;Acknowledgments;50
5.1.7;References;50
6;3. Structural survey of the Peroxiredoxins;54
6.1;P. Andrew Karplus and Andrea Hall;54
6.1.1;1. Scope and Purpose;54
6.1.2;2. Introduction;57
6.1.3;3. Universal Features of the Prx Catalytic Cycle;57
6.1.4;4. Summary of Structural Investigations;59
6.1.5;5. Structural Features Common to all Prxs;59
6.1.5.1;5.1. Overall Structure;59
6.1.6;6. Features Varying Between Prx Subfamilies;64
6.1.6.1;6.1. Quaternary Structures;64
6.1.6.2;6.2. Variations in the Presence and Placement of the Resolving Cys;66
6.1.7;Acknowledgements;71
6.1.8;References;71
7;4. The Catalytic Mechanism of Peroxiredoxins;74
7.1;Leslie B. Poole;74
7.1.1;1. Introduction;74
7.1.2;2. Catalysis of the Peroxide Reduction Step;75
7.1.2.1;2.1. Reaction at the Critical Cysteine Residue;75
7.1.2.2;2.2. Other Active Site Residues Participating in Catalysis;77
7.1.2.3;2.3. Substrate Specificity Studies;78
7.1.3;3. Residues Conserved Among Specific Groups of Prxs with Possible Roles in Catalysis;80
7.1.4;4. Steps in Catalysis Beyond Cysteine Sulfenic Acid Formation: Reduction and Overoxidation;82
7.1.4.1;4.1. Distinctions between 1-Cys and 2-Cys Peroxidatic Mechanisms;82
7.1.4.2;4.2. Reductive Recycling of Prxs;83
7.1.4.3;4.3. Oxidative Inactivation of Prxs during Turnover;84
7.1.5;5. Interplay Between Oligomeric State, Catalysis and Inactivation During Turnover in Typical 2-Cys Prxs;86
7.1.6;6. Conclusions;89
7.1.7;Acknowledgements;89
7.1.8;References;89
8;5. Kinetics of Peroxiredoxins and their Role in the Decomposition of Peroxynitrite;95
8.1;Madia Trujillo, Gerardo Ferrer-Sueta, Leonor Thomson,;95
8.2;1. Introduction;96
8.3;2. General Approaches to Study Peroxiredoxin Kinetics;98
8.3.1;2.1. Steady-state Kinetic Analysis;99
8.3.2;2.2. Pre-steady State Approaches;109
8.4;3. The Special Case: Peroxynitrite;112
8.4.1;3.1. Biochemistry of Peroxynitrite;112
8.4.2;3.2. Pre-steady State Kinetics: Determining the Kineticsof Peroxynitrite-mediated Peroxiredoxin Oxidation, DirectInitial Rate and Competition Approaches;113
8.4.3;3.3. Steady State Approach: Peroxynitrite Reductase Activitiesof Peroxiredoxins;117
8.4.4;3.4. Peroxiredoxins Catalytically Detoxify Peroxynitrite Formedfrom Fluxes of NO and O2 ;117
8.5;4. Relevance of Peroxiredoxin-Catalyzed Peroxynitrite Detoxification;119
8.6;Acknowledgements ;121
8.7;References;121
9;6 The Peroxiredoxin Repair Proteins;126
9.1;Thomas J. Jönsson and W. Todd Lowther;126
9.1.1;1. Introduction;126
9.1.2;2. The Hyperoxidation of Peroxiredoxins;127
9.1.3;3. Retroreduction of Typical 2-Cys Peroxiredoxins;128
9.1.3.1;3.1. Discovery and Initial Characterization of Sulfiredoxin;129
9.1.4;4. Distribution of Prx Repair Enzymes;131
9.1.4.1;4.1. Prx Oxidation Susceptibility and Repair Correlations;131
9.1.4.2;4.2. Tissue Distribution;132
9.1.4.3;4.3. Conservation of Srx;132
9.1.5.1;5.1. Novel Protein Fold and Nucleiotide-binding Motif;134
9.1.6;6. Catalytic Properties of Srx;139
9.1.6.1;6.1. Cofactor Requirements and Catalytic Efficiency;139
9.1.6.2;6.2. Substrate Specificity and Mutational Analysis;139
9.1.6.3;6.3. Exploring the Reaction Mechanism;141
9.1.7;7. Importance of Srx in Cell Signalling and Defense;143
9.1.7.1;7.1. Prx-dependent Peroxide Sensing in Schizosaccharomyces pombe;143
9.1.7.2;7.2. Src and Chloroplast Protection;144
9.1.7.3;7.3. Srx and Modulation of Prx Chaperone Function;145
9.1.7.4;7.4. Srx and (De)glutathionylation Phenomena;147
9.1.8;8. Conclusions;148
9.1.9;Acknowledgements;148
9.1.10;References;148
10;7. Peroxiredoxins in Bacterial Antioxidant Defense;153
10.1;James M. Dubbs and Skorn Mongkolsuk;153
10.1.1;1. Introduction;153
10.1.2;2. Bacterial Alkylhydroperoxidase: AhpC;156
10.1.2.1;2.1. OxyR Mediated Regulation of AhpC;158
10.1.2.2;2.2. PerR Mediated Regulation of AhpC;165
10.1.2.3;2.3. HypR Mediated Regulation of AhpC;168
10.1.2.4;2.4. AhpC Systems of Indeterminate Regulatory Mechanism;169
10.1.2.5;2.5. Physiological Role of AhpC;173
10.1.3;3. Tpx: Thiol Preoxidase;179
10.1.3.1;3.1. Tpx Structure and Biochemistry;179
10.1.4;4. Ohr/OsmC Peroxiredoxin Family;183
10.1.4.1;4.1. Ohr (Organic Hydroperoxide Resistance) Structure and Biochemistry;183
10.1.4.2;4.2. Osmotically Inducible Protein: OsmC;188
10.1.5;5. Conclusion;192
10.1.6;Acknowledgements;193
10.1.7;References;193
11;8. The NADH Oxidase-Prx System in Amphibacillus Xylanus;204
11.1;Youichi Niimura;204
11.1.1;1. Introduction;204
11.1.2.1;2.1. Reaction Mechanism of Hydrogen Peroxide Reduction;206
11.1.2.3;2.3. Supramolecular Organization of the System;208
11.1.3;3. Physiological Role of the NADH Oxidase-Prx System;210
11.1.4;4. Conclusions;212
11.1.5;Acknowledgments;212
11.1.6;References;213
12;9. Peroxiredoxin Systems in Mycobacteria;215
12.1;Timo Jaeger;215
12.1.1;1. Introduction;215
12.1.2;2. Mycobacterial Peroxiredoxins;216
12.1.3;2.1. Alkyl Hydroperoxide Reductase (AhpC);216
12.1.4;2.2. Thioredoxin Peroxidase (TPx);218
12.1.5;2.3. Other Peroxiredoxins in Mycobacteria;220
12.1.6;3. Reduction of Thioredoxins;220
12.1.7;4. Potential Impact for Drug Discovery;221
12.1.8;References;222
13;10. Peroxiredoxin Systems of Protozoal Parasites;226
13.1;Marcel Deponte, Stefan Rahlfs and Katja Becker;226
13.1.1;1. Introduction;226
13.1.2;2. Targeting Redox Metabolism in Protozoal Parasites;227
13.1.2.1;2.1. Complete Lack or Substitution of One or More Componentsof the Redox System;228
13.1.2.2;2.2. Differences in the Number and/or the Substrate Specificityof Similar Enzymes;228
13.1.2.3;2.3. Different Properties of Isofunctional Homologous Proteins;229
13.1.3;3. Properties of Plasmodium Peroxiredoxins;229
13.1.3.1;3.1. Thioredoxin Peroxidase 1 (TPx-1);230
13.1.3.2;3.2. Thioredoxin Peroxidase 2 (TPx-2);231
13.1.3.3;3.3. Antioxidant Protein (AOP);232
13.1.3.4;3.4. 1-Cys Peroxiredoxin (1-Cys-Prx);232
13.1.4;4. Future Perspectives;234
13.1.5;Acknowledgements;234
13.1.6;References;234
14;11. The Trypanothione System;237
14.1;Luise R. Krauth-Siegel, Marcelo A. Comini and Tanja Schlecker;237
14.1.1;1. Introduction;237
14.1.2;2. The Parasite Specific Dithiol Trypanothione;238
14.1.2.1;2.1. Occurrence and Biosynthesis of Trypanothione;238
14.1.2.2;2.2. Trypanothione is more than Twice Glutathione;239
14.1.2.3;2.3. The Trypanothione/Tryparedoxin Couple in the RedoxMetabolism of Trypanosomatids;240
14.1.3;3. Trypanothione/Tryparedoxin- Dependent 2-Cys-Peroxiredoxins (Tryparedoxin Peroxidases);241
14.1.3.1;3.1. On the Diversity of Tryparedoxin Peroxidases in Trypanosomatids;241
14.1.3.2;3.2. Specificity and Efficiency of the Tryparedoxin Peroxidases;244
14.1.3.3;3.3. Catalytic Mechanism of the Trypanosomatid 2-Cys-peroxiredoxins;245
14.1.3.4;3.4. Three-dimensional Structures of Tryparedoxin Peroxidases;247
14.1.3.5;3.5. The Tryparedoxin Peroxidases are Resistance and MetastasisFactors and are Essential for the Parasites;249
14.1.4;4. Other Trypanothione-Dependent Perox.Idases;250
14.1.5;4.1. Glutathione Peroxidase-type Tryparedoxin Peroxidases;250
14.1.6;4.2. Ascorbate-dependent Peroxidases;251
14.1.7;Acknowledgements;252
14.1.8;References;252
15;12. Functions of Typical 2-Cys Peroxiredoxins in Yeast;258
15.1;Brian A. Morgan and Elizabeth A. Veal;258
15.1.1;1. Introduction;258
15.1.2;2. Typical 2-Cys Prxs and Signal Transduction;259
15.1.2.1;2.1. Regulation of H2O2-induced Activation of the Yap1 TranscriptionFactor in S. cerevisiae;260
15.1.2.2;2.2. Regulation of H2O2-induced Gene Expression in S. pombe;261
15.1.3;3. Typical 2-Cys Prx Act as Molecular Chaperones in S. Cerevisiae;265
15.1.4;4. Typical 2-Cys Prx and the Response to Dna Damage;266
15.1.5;5. Functions of Typical 2-Cys Prx in Other Yeasts;266
15.1.5.1;5.1. Typical 2-Cys Prx in Candida albicans;266
15.1.5.2;5.2. Typical 2-Cys Prx in Cryptococcus neoformans;267
15.1.6;6. Conclusions and Perspectives;268
15.1.7;Acknowledgements;268
15.1.8;References;268
16;13 The Dual Function of Plant Peroxiredoxins in Antioxidant Defence and Redox Signaling;271
16.1;Karl-Josef Dietz;271
16.1.1;1. Introduction;271
16.1.2;2. The Principle Types of Peroxiredoxins Based on their Biochemical Properties;274
16.1.2.1;2.1. Plant Prx Classification;274
16.1.2.2;2.2. The Gene Family of Peroxiredoxins in Plants and Cyanobacteria;275
16.1.3;3. Catalytic Function and Regeneration of Plant Prx;276
16.1.3.1;3.1. Peroxide Substrates of Peroxiredoxins;276
16.1.3.2;3.3. Reduction of PrxQ;280
16.1.3.3;3.4. 1-Cys Prx;281
16.1.3.4;3.5. PrxII;281
16.1.4;4. Transcript Regulation of Prx-Genes and~Protein~Accumulation;281
16.1.4.1;4.1. Tissue Specificity of Expression;282
16.1.4.2;4.2. Transcript Regulation in Mutants and under Oxidative StressDeduced from Array Hybridisations;282
16.1.4.3;4.3. Transcript Regulation under Abiotic Stresses;283
16.1.4.4;4.4. Regulation in Response to Pathogen Infection;285
16.1.4.5;4.5. Effector Studies;286
16.1.5;5. Plant Prx in Photosynthesis;288
16.1.5.1;5.1. Peroxiredoxins in Cyanobacterial Photosynthesis;288
16.1.5.2;5.2. Peroxiredoxins in Plant Photosynthesis;288
16.1.6;6. Prx in Plant Development;289
16.1.7;7. Plant Peroxiredoxins in Signaling and Outlook;291
16.1.8;Acknowledgements;293
16.1.9;References;293
17;14. Mitochondrial Peroxiredoxins;299
17.1;Zhenbo Cao, J. Gordon Lindsay and Neil W. Isaacs;299
17.1.1;1. Introduction;299
17.1.1.1;1.1. Mitochondria;299
17.1.1.2;1.2. Oxidative Stress;300
17.1.2.3;2.3. Protein Oxidative Damage;302
17.1.2.4;2.4. The Role of Oxidative Stress in Disease;303
17.1.2.5;2.5. Mitochondrial Antioxidant Defence Systems;304
17.1.2.6;2.6. Mitochondrial Thioredoxin and Thioredoxin Reductase;305
17.1.3;3. Mitochondrial Prxs;307
17.1.3.1;3.1. PrxIII;307
17.1.3.2;3.2. PrxV;307
17.1.4;4. Structure and Catalytic Mechanism of Prxiii and Prx V;308
17.1.4.1;4.1. PrxIII;308
17.1.6;6. Concluding Remarks;313
17.1.7;References;315
18;15. Peroxiredoxins in the Lung with Emphasis on~Peroxiredoxin VI;320
18.1;Bruno Schremmer, Yefim Manevich, Sheldon I. Feinstein and Aron B. Fisher;320
18.1.1;1. Introduction;321
18.1.2;2. Distribution, Development and Regulation of Prx in the Lung;322
18.1.2.1;2.1. Distribution;322
18.1.2.2;2.2. Developmental Regulation;324
18.1.2.3;2.3. Regulation of Expression in the Mature Lung;324
18.1.3;3. The Peroxidase Activity of Prx VI;325
18.1.3.1;3.1. The Electron Donor for Prx VI;326
18.1.3.2;3.2. Substrate Specificity of Prx VI;328
18.1.3.3;3.3. Structural Determinants for Enzymatic Activity;329
18.1.4;4. Antioxidant Function of Prx VI in the Lung;331
18.1.4.1;4.1. Cellular Models of Altered Prx VI Expression;334
18.1.4.2;4.2. Animal Models of Altered Prx VI Expression;335
18.1.5;5. Phospholipase A 2 Activity of Prx VI;336
18.1.5.1;5.1. Overview of Surfactant Physiology;336
18.1.5.2;5.2. Properties of Prx VI as a Phospholipase A2;336
18.1.5.3;5.3. Structural Determinants for Phospholipase Activi;337
18.1.5.4;5.4. Prx VI and Surfactant Phospholipid Metabolism;338
18.1.6;6. Peroxiredoxins in Lung Disease;340
18.1.6.1;6.1. Acute Lung Injury;340
18.1.6.2;6.2. Lung Cancer;340
18.1.6.3;6.3. Mesothelioma;341
18.1.6.4;6.4. Sarcoidosis;341
18.1.7;7. Conclusions and Speculation;342
18.1.8;Acknowledgements;342
18.1.9;References;342
19;16. Peroxiredoxins in Gametogenesis and Embryo Development;348
19.1;Isabelle Donnay and Bernard Knoops;348
19.1.1;1. Gametes and Gonads;348
19.1.1.1;1.1. Testis and Sperm;348
19.1.1.2;1.2. Ovaries and Oocytes;350
19.1.2;2. Embryo;352
19.1.2.1;2.1. Preimplantation Embryo;352
19.1.2.2;2.2. Post-implantation Embryo;353
19.1.2.3;2.3. Placenta;354
19.1.2.4;2.4. Perinatal Period;354
19.1.3;3. Insects;355
19.1.4;4. Conclusion;355
19.1.5;Acknowledgments;355
19.1.6;References;356
20;17. Peroxiredoxins in the Central Nervous System;359
20.1;Fumiyuki Hattori and Shinzo Oikawa;359
20.1.1;1. Introduction: Oxidative Stress and the Nervous System;359
20.1.1.1;1.1. Alzheimer’s Disease (AD);359
20.1.1.2;1.2. Parkinson’s Disease (PD);360
20.1.1.3;1.3. Amyotrophic Lateral Sclerosis (ALS);360
20.1.1.4;1.4. Stroke;361
20.1.1.5;1.5. Excitotoxicity;361
20.1.2;2. Expression of Peroxiredoxin/Thioredoxin Reductase System in the Nervous System;362
20.1.2.1;2.1. Basal Expression of Prxs in the CNS;362
20.1.2.2;2.2. Basal Expression of Trxs in the CNS;363
20.1.2.3;2.3. Basal Expression of Thiredoxin Reductases in the CNS;364
20.1.2.4;2.4. Prxs Induction and Reduction in the CNS;364
20.1.2.5;2.5. Altered Expression of Prxs in Neurodegenerative Diseases;364
20.1.2.6;2.6. Trx Induction in the CNS;365
20.1.2.7;2.7. Altered Expression of Trx and TrxR in NeurodegenerativeDiseases;368
20.1.2.8;2.8. Neuroprotective Effects of Transgenic TrxI Expression;370
20.1.2.9;2.9. PrxI-presenilin-1 Interactions;371
20.1.2.10;2.10. Prx-mediated Neuroprotection;371
20.1.3;3. Concluding Remarks and Perspectives;372
20.1.4;References;372
21;18. Stress-Induced Peroxiredoxins;377
21.1;Tetsuro Ishii And Toru Yanagawa;377
21.1.1;1. Introduction;377
21.1.2;2. Activation of Prx I Gene Expression;378
21.1.2.1;2.1. Prx I gene Activation by Stress Agents in Macrophages;378
21.1.2.2;2.2. Role of the Nrf2 and Keap1 System in the Induction of Prx IExpression by Electrophiles;379
21.1.2.3;2.3. Effects of Heme on the Expression and Activity of Prx I;380
21.1.2.4;2.4. Regulation of the Prx I Expression Levels by Serum or TPA;381
21.1.2.5;2.5. Signaling Pathways Leading to Prx I Gene Expression by Arsenic;381
21.1.2.6;2.6. Effects of Oxidative Stress on the Expression of Prx I in the Lung;382
21.1.2.7;2.7. Activation of Prx I gene Expression in Vivo by Dietary BHA;383
21.1.3;3. Stress Induction of Other Prxs;383
21.1.3.1;3.1. Stress Induction of Prx III;383
21.1.3.2;3.2. Activation of Prx II Gene Expression by Radiation;384
21.1.4;4. Conclusions;384
21.1.5;Acknowledgments;384
21.1.6;References;384
22;Index;387
23;Color Plates;392



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.