Flynn / Aitken / Gibbons | Low Power Methodology Manual | E-Book | www.sack.de
E-Book

E-Book, Englisch, 300 Seiten

Reihe: Integrated Circuits and Systems

Flynn / Aitken / Gibbons Low Power Methodology Manual

For System-on-Chip Design
1. Auflage 2007
ISBN: 978-0-387-71819-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

For System-on-Chip Design

E-Book, Englisch, 300 Seiten

Reihe: Integrated Circuits and Systems

ISBN: 978-0-387-71819-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book provides a practical guide for engineers doing low power System-on-Chip (SoC) designs. It covers various aspects of low power design from architectural issues and design techniques to circuit design of power gating switches. In addition to providing a theoretical basis for these techniques, the book addresses the practical issues of implementing them in today's designs with today's tools.

ABOUT THE AUTHORS: Michael Keating is a Synopsys Fellow in the company's Advanced Technology Group, focusing on IP development methodology, hardware and software design quality and low power design. David Flynn is an ARM R&D Fellow and has been with the company since 1991, specializing in low power System-on-Chip IP deployment and methodology. Robert Aitken is an ARM R&D Fellow. His areas of responsibility include memory architecture, design for testability and design for manufacturability. Alan Gibbons is a Principal Engineer at Synopsys, with a focus on development of advanced methodology and technology for ARM processor-based system design. Kaijian Shi is a Principal Consultant in the Professional Services Group of Synopsys, specializing in low power design methodology and implementation.

Flynn / Aitken / Gibbons Low Power Methodology Manual jetzt bestellen!

Weitere Infos & Material


1;Preface;6
2;Table of Contents;8
3;1 Introduction;15
3.1;1.1 Overview;15
3.2;1.2 Scope of the Problem;16
3.3;1.3 Power vs. Energy;17
3.4;1.4 Dynamic Power;18
3.5;1.5 The Conflict Between Dynamic and Static Power;21
3.6;1.6 Static Power;22
3.7;1.7 Purpose of This Book;24
4;2 Standard Low Power Methods;27
4.1;2.1 Clock Gating;27
4.2;2.2 Gate Level Power Optimization;29
4.3;2.3 Multi VDD;30
4.4;2.4 Multi-Threshold Logic;31
4.5;2.5 Summary of the Impact of Standard Low Power Techniques;33
5;3 Multi- Voltage Design;34
5.1;3.1 Challenges in Multi-Voltage Designs;35
5.2;3.2 Voltage Scaling Interfaces – Level Shifters;35
5.3;3.3 Timing Issues in Multi-Voltage Designs;42
5.4;3.4 Power Planning for Multi-Voltage Design;43
5.5;3.5 System Design Issues with Multi-Voltage Designs;44
6;4 Power Gating Overview;45
6.1;4.1 Dynamic and Leakage Power Profiles;45
6.2;4.2 Impact of Power Gating on Classes of Sub-Systems;48
6.3;4.3 Principles of Power Gating Design;49
7;5 Designing Power Gating;53
7.1;5.1 Switching Fabric Design;54
7.2;5.2 Signal Isolation;57
7.3;5.3 State Retention and Restoration Methods;62
7.4;5.4 Power Gating Control;71
7.5;5.5 Power Gating Design Verification – RTL Simulation;75
7.6;5.6 Design For Test Considerations;82
7.7;6.1 Hierarchy and Power Gating;86
8;6 Architectural Issues for Power Gating ;86
8.1;6.2 Power Networks and Their Control;89
8.2;6.3 Power State Tables and Always On Regions;93
9;7 A Power Gating Example;95
9.1;7.1 Leakage Modes Supported;95
9.2;7.2 Design Partitioning;98
9.3;7.3 Isolation;102
9.4;7.4 Retention;104
9.5;7.5 Inferring Power Gating and Retention;105
9.6;7.6 Measurements and Analysis;106
10;8 IP Design for Low Power;111
10.1;8.1 Architecture and Partitioning for Power Gating;112
10.2;8.2 Power Controller Design for the USB OTG;115
10.3;8.3 Issues in Designing Portable Power Controllers;118
10.4;8.4 Clocks and Resets;119
10.5;8.5 Verification;119
10.6;8.6 Packaging IP for Reuse with Power Intent;120
10.7;8.7 UPF for the USB OTG Core;121
10.8;8.8 USB OTG Power Gating Controller State Machine;124
11;9 Frequency and Voltage Scaling Design;130
11.1;9.1 Dynamic Power and Energy;131
11.2;9.2 Voltage Scaling Approaches;134
11.3;9.3 Dynamic Voltage and Frequency Scaling (DVFS);134
11.4;9.4 CPU Subsystem Design Issues;138
11.5;9.5 Adaptive Voltage Scaling (AVS);139
11.6;9.6 Level Shifters and Isolation;140
11.7;9.7 Voltage Scaling Interfaces – Effect on Synchronous Timing;141
11.8;9.8 Control of Voltage Scaling;145
12;10 Examples of Voltage Design and Frequency Scaling Examples of Voltage;147
12.1;10.1 Voltage Scaling - A Worked Example for UMC 130nm;147
12.2;10.2 65nm Voltage Scaling – A Worked Example for TSMC;158
13;11 Implementing Multi- Voltage, Power Gated Designs;163
13.1;11.1 Design Partitioning;166
13.2;11.2 Design Flow Overview;168
13.3;11.3 Synthesis;170
13.4;11.4 Multi Corner Multi Mode Optimization with Voltage Scaling Designs;179
13.5;11.5 Design Planning;181
13.6;11.6 Power Planning;185
13.7;11.7 Clock Tree Synthesis;188
13.8;11.8 Power Analysis;191
13.9;11.9 Timing Analysis;192
13.10;11.10Low Power Validation;193
13.11;11.11 Manufacturing Test;193
14;12 Physical Libraries;195
14.1;12.1 Standard Cell Libraries;195
14.2;12.2 Special Cells - Isolation Cells;198
14.3;12.3 Special Cells - Level Shifters;203
14.4;12.4 Memories;206
14.5;12.5 Power Gating Strategies and Structures;208
14.6;12.6 Power Gating Cells;212
14.7;12.7 Power Gated Standard Cell Libraries;214
15;13 Retention Register Design;216
15.1;13.1 Retention Registers;216
15.2;13.2 Memory Retention Methods;226
16;14 Design of the Power Switching Network;231
16.1;14.1 Ring vs. Grid Style;231
16.2;14.2 Header vs. Footer Switch;238
16.3;14.3 Rail vs. Strap VDD Supply;242
16.4;14.4 A Sleep Transistor Example;245
16.5;14.5 Wakeup Current and Latency Control Methods;246
16.6;14.6 An Example of a Dual Daisy Chain Sleep Transistor Implementation;252
17;A Sleep Transistor Design;254
17.1;A.1 Sleep Transistor Design Metrics;255
17.2;PMOS Vth (Vdd=1, T=30, Vbb=0..1V);260
17.3;Vth ( V);260
17.4;A.2 Layout Design for Area Efficiency;265
17.5;A.3 Single Row vs. Double Row;267
17.6;A.4 In-rush Current and Latency Analysis;268
18;B UPF Command Syntax;271
18.1;B.1 add_pst_state;272
18.2;B.2 connect_supply_net;273
18.3;B.3 create_power_domain;275
18.4;B.4 create_power_switch;277
18.5;B.5 create_pst;279
18.6;B.6 create_supply_net;280
18.7;B.7 create_supply_port;281
18.8;B.8 set_domain_supply_net;282
18.9;B.9 set_isolation;283
18.10;B.10 set_isolation_control;285
18.11;B.11 set_level_shifter;287
18.12;B.12 set_retention;289
18.13;B.13 set_retention_control;291
18.14;B.14 set_scope;292
19;Glossary;294
20;Bibliography;296
21;Index;300



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.