Fogarty | Evolutionary Computing | Buch | 978-3-540-58483-4 | sack.de

Buch, Englisch, Band 865, 340 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1090 g

Reihe: Lecture Notes in Computer Science

Fogarty

Evolutionary Computing

AISB Workshop, Leeds, U.K., April 11 - 13, 1994. Selected Papers
1994
ISBN: 978-3-540-58483-4
Verlag: Springer Berlin Heidelberg

AISB Workshop, Leeds, U.K., April 11 - 13, 1994. Selected Papers

Buch, Englisch, Band 865, 340 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1090 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-540-58483-4
Verlag: Springer Berlin Heidelberg


This volume is based on the Workshop on Evolutionary Computing held in Leeds, U.K. in April 1994 under the sponsorship of the Society for the Study of Artificial Intelligence and Simulation of Behaviour. In addition to the 22 best papers presented at the workshop, there are two invited contributions by Ray Paton and Colin Reever.
The volume addresses several aspects of evolutionary computing, particularly genetic algorithms, and its applications, for example in search, robotics, signal processing, machine learning, and scheduling. The papers are organized in sections on theoretical and biological foundations, techniques, classifier systems, and applications.
Fogarty Evolutionary Computing jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Formal memetic algorithms.- A statistical mechanical formulation of the dynamics of genetic algorithms.- Evolutionary stability in simple classifier systems.- Nonbinary transforms for genetic algorithm problems.- Enhancing evolutionary computation using analogues of biological mechanisms.- Exploiting mate choice in evolutionary computation: Sexual selection as a process of search, optimization, and diversification.- An empirical comparison of selection methods in evolutionary algorithms.- An evolution strategy and genetic algorithm hybrid: An initial implementation and first results.- Genetic algorithms and directed adaptation.- Genetic algorithms and neighbourhood search.- A unified paradigm for parallel Genetic Algorithms.- Distributed coevolutionary genetic algorithms for multi-criteria and multi-constraint optimisation.- Inductive operators and rule repair in a hybrid genetic learning system: Some initial results.- Adaptive learning of a robot arm.- Co-evolving Co-operative populations of rules in learning control systems.- Learning anticipatory behaviour using a delayed action classifier system.- Applying a restricted mating policy to determine state space niches using immediate and delayed reinforcement.- A comparison between two architectures for searching and learning in maze problems.- Fast practical evolutionary timetabling.- Optimising a presentation timetable using evolutionary algorithms.- Genetic algorithms and flowshop scheduling: towards the development of a real-time process control system.- Genetic algorithms for digital signal processing.- Complexity reduction using expansive coding.- The application of genetic programming to the investigation of short, noisy, chaotic data series.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.