E-Book, Englisch, 1006 Seiten, Web PDF
Friend / Gutmann Electrochemistry
1. Auflage 2013
ISBN: 978-1-4832-2334-6
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings of the First Australian Conference on Held in Sydney, 13-15th February and Hobart, 18-20th February 1963
E-Book, Englisch, 1006 Seiten, Web PDF
ISBN: 978-1-4832-2334-6
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Electrochemistry is a collection of papers presented at the First Australian Conference on Electrochemistry, held in Sydney on February 13-15 and in Hobart on February 18-20, 1963, jointly sponsored by The Royal Australian Chemical Institute, The University of New South Wales, and The University of Tasmania. This conference highlights the numerous advances in the field of electrochemistry. This book is organized into 12 parts encompassing 70 chapters. The first parts deal with the solid-state reactions and processes in electrochemistry; the thermodynamic aspects of electrolytes; and the role of electrodic in corrosion control. The succeeding parts explore the concepts of equilibrium and non-equilibrium theory of double layers, as well as the various electroanalytical methods used in electrochemistry, including polarography, potentiometry, and coulometry. Other parts consider the areas of application of electrochemistry, such as in electroplating, anodizing, fuel cell, electrowinning, and electrorefining. The remaining chapters are devoted to non-aqueous electrolytes, molten salts, and electrode and electrochemical processes. Electrochemists and physicists will find this book invaluable.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Electrochemistry;4
3;Copyright Page;5
4;Table of Contents;8
5;ACKNOWLEDGEMENTS;15
6;FOREWORD;16
7;PART 1: SOLID-STATE CHEMISTRY;18
7.1;CHAPTER 1. ELEMENTARY PROCESSES IN SOLID-STATE REACTIONS;20
7.1.1;I. INTRODUCTION;20
7.1.2;II. CLASSES OF SOLID - STATE REACTION;21
7.1.3;III. DEFECTS IN SOLIDS AND THEIR IMPLICATIONS IN SOLID-STATE REACTIONS;21
7.1.4;IV. ELEMENTARY STEPS OF SOLID-STATE REACTIONS;30
7.1.5;V. INCORPORATION OF GAS ATOMS IN SUB-SURFACE;31
7.1.6;VI. AGGREGATION OF DEFECTS … PRENUCLEUS FORMATION;35
7.1.7;VII. NUCLEATION AND GROWTH OF THE PRODUCT PHASE;37
7.1.8;VIII. THE FORMATION OF GASEOUS PRODUCTS;39
7.1.9;REFERENCES;40
7.2;CHAPTER 2. THE INTERACTION OF CHLORINE AND OF OXYGEN WITH EVAPORATED FILMS OF SODIUM;42
7.2.1;INTRODUCTION;42
7.2.2;EXPERIMENTAL;42
7.2.3;RESULTS;45
7.2.4;DISCUSSION;48
7.2.5;REFERENCES;51
7.3;CHAPTER 3. THE GERMANIUM-AQUEOUS ELECTROLYTE CONTACT ZONE;52
7.3.1;INTRODUCTION;52
7.3.2;INTERACTION OF Ge SURFACES WITH WATER VAPOUR;53
7.3.3;STRUCTURE OF LIQUID IN CONTACT WITH SOLID;54
7.3.4;THE GERMANIUM - WATER INTERFACE;55
7.3.5;SOLUTE IONS;57
7.3.6;ORIENTATION EFFECTS;57
7.3.7;OTHER MATERIALS;59
7.3.8;REFERENCES;60
7.4;CHAPTER 4. THE ELECTRICAL PROPERTIES OF POLYCRYSTALLINE OXIDE SEMICONDUCTORS;61
7.4.1;EXPERIMENTAL;63
7.4.2;RESULTS;66
7.4.3;DISCUSSION;72
7.4.4;REFERENCES;77
7.5;CHAPTER 5. EFFECT OF QUENCH FREQUENCY ON THE NUCLEAR QUADRUPOLE RESONANCE OF SOME COMPOUNDS CONTAINING 35Cl;79
7.5.1;I. INTRODUCTION;79
7.5.2;II. THE SPECTROMETER;81
7.5.3;III. EXPERIMENTAL RESULTS AND DISCUSSION;83
7.5.4;IV. ADDENDUM;87
7.5.5;REFERENCES;88
7.6;CHAPTER 6. THE SILVER OXIDES;89
7.6.1;INTRODUCTION;89
7.6.2;THE PREPARATION, PROPERTIES AND STRUCTURES OF THE SILVER OXIDES;90
7.6.3;ELECTROLYTIC TRANSFORMATIONS OF THE SILVER OXIDES;96
7.6.4;THERMAL TRANSFORMATIONS OF THE SILVER OXIDES;99
7.6.5;REFERENCES;103
7.7;CHAPTER 7. MICROSCOPIC INVESTIGATION OF THE THERMAL DECOMPOSITION OF SILVER AND POTASSIUM PERMANGANATES;105
7.7.1;INTRODUCTION;105
7.7.2;EXPERIMENTAL;107
7.7.3;RESULTS;108
7.7.4;DISCUSSION;110
7.7.5;CONCLUSIONS;112
7.7.6;REFERENCES;112
8;PART 2: THERMODYNAMICS OF ELECTROLYTES;114
8.1;CHAPTER 8. THERMODYNAMICS OF ELECTROLYTES IN THREE-COMPONENT SYSTEMS;116
8.1.1;THEORIES OF MIXED ELECTROLYTES;122
8.1.2;REFERENCES;123
8.2;CHAPTER 9. THE ION ACTIVITY FUNCTION– AN APPROACH TO THE STUDY OF ELECTROLYTE BEHAVIOUR IN CONCENTRATED SOLUTIONS;124
8.2.1;DIVALENT METAL PERCHLORATE– WATER SYSTEMS;125
8.2.2;THE AVERAGE DEGREE OF HYDRATION;128
8.2.3;STUDIES ON THE HC1-H2O SYSTEM;130
8.2.4;REFERENCES;131
8.3;CHAPTER 10. THE OXIDATION-REDUCTION POTENTIALS OF COPPER COMPLEX IONS;132
8.3.1;EXPERIMENTAL METHODS;135
8.3.2;EXPERIMENTAL RESULTS;136
8.3.3;DISCUSSION;137
8.3.4;REFERENCES;140
8.4;CHAPTER 11. THERMODYNAMICS OF AQUEOUS BISMUTH (III);141
8.4.1;INTRODUCTION;141
8.4.2;EXPERIMENTAL;142
8.4.3;RESULTS AND DISCUSSION;143
8.4.4;REFERENCES;146
8.5;CHAPTER 12. THE THERMODYNAMICS OF ION ASSOCIATION IN SOLUTIONS CONTAINING BIVALENT TRANSITION METAL IONS;147
8.5.1;THERMODYNAMIC ASSOCIATION CONSTANTS;148
8.5.2;ENTHALPY CHANGES;151
8.5.3;ENTROPY CHANGES;153
8.5.4;REFERENCES;154
8.6;CHAPTER 13. HEAT EFFECTS AT ELECTRODES;155
8.6.1;INTRODUCTION;155
8.6.2;THE CALORIMETER;156
8.6.3;TESTING THE CALORIMETER;159
8.6.4;HEAT EFFECTS AT SINGLE ELECTRODES;160
8.6.5;REFERENCES;163
9;PART 3: CORROSION;164
9.1;CHAPTER 14. CORROSION AT HIGH TEMPERATURES;166
9.1.1;1. INTRODUCTION;166
9.1.2;2. COMPARISON OF AQUEOUS CORROSION WITH HIGH TEMPERATURE CORROSION;167
9.1.3;3. LIQUID–SOLID SYSTEMS;168
9.1.4;4. GAS-SOLID SYSTEMS;175
9.1.5;5. CONCLUSION;179
9.1.6;REFERENCES;180
9.2;CHAPTER 15. A POTENTIOSTATIC STUDY OF THE CORROSION OF IRON-CHROMIUM ALLOYS;181
9.2.1;I. INTRODUCTION;181
9.2.2;II. EXPERIMENTAL PROCEDURE;184
9.2.3;III. RESULTS;186
9.2.4;IV. DISCUSSION;191
9.2.5;V. CONCLUSION;196
9.2.6;REFERENCES;197
9.3;CHAPTER 16. ANODIC PROCESSES ON IRONIN NEUTRAL SULPHIDE SOLUTIONS;198
9.3.1;INTRODUCTION;198
9.3.2;EXPERIMENTAL;199
9.3.3;DISCUSSION;203
9.3.4;REFERENCES;204
9.4;CHAPTER 17. TWO APPLICATIONS OF POTENTIOSTATS IN CORROSION RESEARCH;205
9.4.1;1. INTRODUCTION;205
9.4.2;2. CORROSION OF DUPLEX BRASS IN SEA-WATER;206
9.4.3;3. POLARIZATION ON OXIDE COVERED IRON IN CHROMATECHLORIDE SOLUTIONS;210
9.4.4;4. RESULTS AND DISCUSSION;211
9.4.5;REFERENCES;213
10;PART 4: THEORY OF DOUBLE LAYERS;214
10.1;CHAPTER 18. EQUILIBRIUM DOUBLE-LAYER THEORY;216
10.1.1;1. INTRODUCTION;217
10.1.2;2. CONTINUOUS CHARGE DISTRIBUTIONS;219
10.1.3;3. DISCRETENESS OF CHARGE EFFECTS;246
10.1.4;4. FURTHER IMPROVEMENTS;253
10.1.5;REFERENCES;261
10.2;CHAPTER 19. EFFECT OF ADSORBED IONS AND MOLECULES ON THE RATES OF ELECTRODE PROCESSES AT THE DROPPING MERCURY ELECTRODE;265
10.2.1;INTRODUCTION;265
10.2.2;RETARDATION OF THE ELECTRODE REACTION;266
10.2.3;ACCELERATION OF THE ELECTRODE REACTION;268
10.2.4;REFERENCES;276
10.3;CHAPTER 20. ON THE IMPEDANCE OF TWO TYPES OF MERCURY DROP ELECTRODES;278
10.3.1;1. INFLUENCE OF THE SUPERIMPOSED SINUSOIDAL CURRENT;278
10.3.2;2. METHODS OF IMPEDANCE MEASUREMENTS;283
10.3.3;3. IMPEDANCE OF THE TWO ELECTRODES;284
10.3.4;REFERENCES;289
11;PART 5: ELECTROANALYTICAL METHODS;290
11.1;CHAPTER 21. NEW ANALYTICAL TECHNIQUES EMPLOYING A.C. POLAROGRAPHY;292
11.1.1;1. INTRODUCTION;292
11.1.2;2. TITRATIONS RELYING ON CHANGES IN REVERSIBILITY OF THE ELECTRODE PROCESS;293
11.1.3;3. TENSAMMETRIC TITRATIONS;296
11.1.4;REFERENCES;298
11.2;CHAPTER 22. ALTERNATING VOLTAGE POLAROGRAPHY;299
11.2.1;INTRODUCTION;299
11.2.2;EXPERIMENTAL ARRANGEMENT;301
11.2.3;CHARACTERISTICS OF THE CHOKE;303
11.2.4;A.C. MILLIVOLTMETER;305
11.2.5;ALTERNATING VOLTAGE POLAROGRAMS AND THEIR INTERPRETATION;306
11.2.6;ADVANTAGES AND DISADVANTAGES OF THE TECHNIQUE;307
11.2.7;REFERENCES;308
11.3;CHAPTER 23. NEW DEVELOPMENTS IN A.C. POLAROGRAPHY;309
11.3.1;A.C. POLAROGRAPHIC WAVES IN THE REGION OF POSITIVE POLARIZATION OF THE DROPPING MERCURY ELECTRODE;309
11.3.2;OSCILLOSCOPIC INVESTIGATIONS OF A .C. PROCESSES;315
11.3.3;STUDIES OF THE DOUBLE-LAYER STRUCTURE;321
11.3.4;REFERENCES;326
11.4;CHAPTER 24. SQUARE WAVE POLAROGRAPHY IN TRACE ANALYSIS;327
11.4.1;POSSIBILITIES AND LIMITATIONS OF DIRECT DETERMINATIONS WITH THE SQUARE WAVE POLAROGRAPH;327
11.4.2;2. ANODIC OXIDATION FOLLOWING PREELECTROLYSIS AT A STATIONARY ELECTRODE;329
11.4.3;REFERENCES;339
11.5;CHAPTER 25. SOME STUDIES IN THE THEORY OF ALTERNATING CURRENT POLAROGRAPHY;340
11.5.1;NOTATION;340
11.5.2;REFERENCES;347
11.6;CHAPTER 26. POTENTIOMETRIC AND COULOMETRIC DETERMINATION OF FLUORIDE;349
11.6.1;REFERENCES;356
11.7;CHAPTER 27. THE POTENTIOMETRIC TITRATION OF ZINC AND CADMIUM WITH POTASSIUM FERROCYANIDE;357
11.7.1;INTRODUCTION;357
11.7.2;EXPERIMENTAL;358
11.7.3;RESULTS;359
11.7.4;DISCUSSION;363
11.7.5;REFERENCES;364
12;PART 6: APPLICATIONS (ELECTROPLATING, ANODIZING);366
12.1;CHAPTER 28. DECORATIVE ELECTROPLATING;368
12.1.1;1. INTRODUCTION;368
12.1.2;2. COPPER PLATING;369
12.1.3;3. ACID COPPER PLATING;369
12.1.4;4. CYANIDE COPPER PLATING;370
12.1.5;5. NICKEL PLATING;373
12.1.6;6. CHROMIUM PLATING;377
12.1.7;7. INDUSTRIAL PRACTICE;378
12.1.8;8. DUPLEX NICKEL;379
12.1.9;9. CRACK-FREE CHROMIUM;380
12.1.10;10. MICRO-CRACKED CHROMIUM;380
12.1.11;11. DUPLEX CHROMIUM;381
12.1.12;12. RECENT FINDINGS;381
12.1.13;13. CONCLUSION;384
12.1.14;REFERENCES;385
12.2;CHAPTER 29. ELECTROPLATING OF DIE CAST PARTS;387
12.2.1;REFERENCES;400
12.2.2;ELECTRODEPOSITION FROM THE SULPHAMATE BATH;401
12.2.3;INTRODUCTION;401
12.2.4;EXPERIMENTAL;401
12.2.5;RESULTS;402
12.2.6;SUMMARY OF RESULTS AND DISCUSSION METALS;402
12.2.7;ALLOYS;405
12.2.8;OTHER METALS AND ALLOYS;407
12.2.9;CONCLUSION;407
12.2.10;REFERENCES;407
12.3;CHAPTER 30. PRACTICAL APPLICATIONS OF ANODIC COATINGS IN NAMEPLATE MANUFACTURE;409
12.3.1;MATERIAL;409
12.3.2;PREPARATION;410
12.3.3;ANODIZING;411
12.3.4;DYEING;412
12.3.5;PRINTING AND STENCILLING;414
12.3.6;CHEMICAL SEALING;415
12.4;CHAPTER 31 CORROSION-RESISTANCE OF NICKEL-CHROMIUM COATINGS. SOME ELECTROCHEMICAL AND METALLOGRAPHIC FEATURES;416
12.4.1;METALLOGRAPHIC FEATURES OF CONVENTIONAL COATINGS;416
12.4.2;ELECTROCHEMICAL FEATURES;420
12.4.3;INFLUENCE OF THE TOPCOAT;421
12.4.4;IMPROVEMENTS TO BE OBTAINED BY MODIFICATION OF TOPCOAT;422
12.4.5;INFLUENCE OF THE UNDERCOAT;426
12.4.6;IMPROVEMENTS OBTAINABLE BY MODIFICATIONS IN UNDERCOAT;429
12.4.7;CONCLUSION;432
12.4.8;REFERENCES;432
12.5;CHAPTER 32. ELECTRODEPOSITED MAGNETIC FILMS: A CRITICAL SURVEY;434
12.5.1;REFERENCES;450
12.6;CHAPTER 33. SOME PROBLEMS ASSOCIATED WITH ARCHITECTURAL ANODIZING;451
12.6.1;CONCLUSION;460
12.6.2;REFERENCES;461
12.6.3;CHAPTER 34. THE MANUFACTURE OF ELECTROLYTIC TINPLATE IN AUSTRALIA;462
12.6.4;DESCRIPTION OF THE HALOGEN TINNING LINE;462
12.6.5;LINE CHEMISTRY;465
12.6.6;CONCLUSION;468
13;PART 7: NON-AQUEOUS ELECTROLYTES;470
13.1;CHAPTER 35. IONS IN NON-AQUEOUS SOLVENTS;472
13.1.1;1;472
13.1.2;2;473
13.1.3;3;476
13.1.4;4;479
13.1.5;5;483
13.1.6;REFERENCES;485
13.2;CHAPTER 36. THE VOLTAGE- CURRENT CHARACTERISTICS OF BENZENE;487
13.2.1;I. INTRODUCTION;487
13.2.2;II. EXPERIMENTAL;488
13.2.3;III. RESULTS;489
13.2.4;IV. DISCUSSION;494
13.2.5;REFERENCES;497
13.3;CHAPTER 37. THE BEHAVIOUR OF SILVER- AND HALIDE-ION RESPONSIVE ELECTRODES IN MIXED SOLVENTWATER MEDIA, AND THE INFLUENCE OF RESTORING CURRENTS ON ELECTRODE RESPONSE;498
13.3.1;NATURE AND CONCENTRATION OF SOLVENT;499
13.3.2;ZERO-CURRENT ELECTRODE RESPONSE;500
13.3.3;THE EFFECT OF RESTORING CURRENTS ON ELECTRODE RESPONSE;503
13.3.4;OTHER EFFECTS OF CURRENTS AND THEIR FIELDS;505
13.3.5;REFERENCES;506
13.4;CHAPTER 38. TRIPLE ION EQUILIBRIA IN ACETIC ACID;508
13.4.1;INTRODUCTION;508
13.4.2;MATHEMATICAL PROCEDURE;509
13.4.3;DISCUSSION;513
13.4.4;EXPERIMENTAL;515
13.4.5;REFERENCES;516
13.5;CHAPTER 39. THE INVESTIGATION OF THE KINETICS OF THE ELECTRODE REACTIONS OF ORGANIC COMPOUNDS BY POTENTIOSTATIC METHODS;517
13.5.1;INTRODUCTION;517
13.5.2;EXPERIMENTAL;519
13.5.3;RESULTS AND DISCUSSION;524
13.5.4;REFERENCES;533
14;PART 8: MOLTEN SALTS;536
14.1;CHAPTER 40. SOLVATION AND COMPLEX IONSIN MOLTEN SALTS;538
14.1.1;E.M.F. STUDY OF CeCl3 WITH ALKALI AND ALKALINE EARTH HALIDES8,9;540
14.1.2;SURFACE TENSION IN MOLTEN FLUORIDES;548
14.1.3;SPECTROSCOPIC STUDIES;551
14.1.4;CONCLUSIONS;557
14.1.5;REFERENCES;558
14.2;CHAPTER 41. STANDARD ELECTRODE POTENTIALS AND AN ELECTROMOTIVE FORCE SERIES IN MOLTEN MAGNESIUM CHLORIDESODIUMCHLORIDE-POTASSIUM CHLORIDE EUTECTIC;560
14.2.1;INTRODUCTION;560
14.2.2;EXPERIMENTAL;561
14.2.3;RESULTS AND DISCUSSION;564
14.2.4;REFERENCES;571
14.3;CHAPTER 42. A TEST OF POLARIZED ELECTRODE METHODS FOR THE STUDY OF DIFFUSION IN FUSED SALTS;574
14.3.1;EXPERIMENTAL;575
14.3.2;RESULTS;575
14.3.3;DISCUSSION;577
14.3.4;REFERENCES;578
14.4;CHAPTER 43. POTENTIOMETRIC ACID-BASE TITRATIONS IN FUSED SALTS;579
14.4.1;I. INTRODUCTION;579
14.4.2;2. EXPERIMENTAL;580
14.4.3;3. RESULTS AND DISCUSSION;581
14.4.4;REFERENCES;593
14.5;CHAPTER 44. THE DENSITY AND SURFACE TENSION OF MOLTEN FLUORIDES;595
14.5.1;INTRODUCTION;595
14.5.2;METHOD OF CALCULATION AND RESULTS;599
14.5.3;DISCUSSION;606
14.5.4;REFERENCES;615
14.6;CHAPTER 45. TRANSPORT NUMBERS IN PURE FUSED ELECTROLYTES;616
14.6.1;INTRODUCTION;616
14.6.2;EXPERIMENTAL;617
14.6.3;DISCUSSION;623
14.6.4;CONCLUSIONS;625
14.6.5;REFERENCES;625
15;PART 9: FUEL CELLS;626
15.1;CHAPTER 46. FUEL CELL TECHNOLOGY: A SURVEY OF ADVANCES AND PROBLEMS;628
15.1.1;CLASSIFICATION OF FUEL CELLS;628
15.1.2;ADVANCES AND PROBLEMS;628
15.1.3;HYDROCARBON - AIR FUEL CELLS;638
15.1.4;METHANOL AND AMMONIA FUEL CELLS;644
15.1.5;SYSTEMS USING SPECIAL FUELS;646
15.1.6;TRENDS IN FUEL CELL TECHNOLOGY;647
15.1.7;SUMMARY;649
15.1.8;REFERENCES;649
15.2;CHAPTER 47. SOME PROBLEMS IN THE CONSTRUCTION OF MEMBRANETYPE FUEL CELLS;651
15.2.1;INTRODUCTION;651
15.2.2;EXPERIMENTAL;652
15.2.3;ION EXCHANGE MEMBRANES;653
15.2.4;CATALYST STRUCTURE;654
15.2.5;WATER REQUIREMENT OF THE MEMBRANE FUEL CELL;655
15.2.6;RESULTS AND DISCUSSION;656
15.2.7;REFERENCES;658
15.3;CHAPTER 48. AN ELECTROLYTE VEHICLE ELIMINATES MANY FUEL CELL PROBLEMS;659
15.3.1;INTRODUCTION;659
15.3.2;CLASSIFICATION OF THE ELECTROLYTE SYSTEMS;660
15.3.3;SUMMARY;671
15.3.4;REFERENCES;672
15.4;CHAPTER 49. THE ANODIC OXIDATION OF FORMALDEHYDE ON PLATINIZED PLATINUM IN ACID SOLUTION;674
15.4.1;INTRODUCTION;674
15.4.2;EXPERIMENTAL;675
15.4.3;RESULTS;676
15.4.4;DISCUSSION;680
15.4.5;REFERENCES;683
15.5;CHAPTER 50. FUEL CELL ELECTROLYTES;685
15.5.1;I. INTRODUCTION;685
15.5.2;II. ELECTROLYTES;687
15.5.3;III. CONCLUSION;698
15.5.4;REFERENCES;701
15.6;CHAPTER 51. PERFORMANCE OF A MOLTEN CARBONATE FUEL CELL AND BATTERY SYSTEM;702
15.6.1;INTRODUCTION;702
15.6.2;RELIABILITY CELLS;703
15.6.3;MULTI-CELL AND BATTERY OPERATION;706
16;PART 10: ELECTRODE PROCESSES;708
16.1;CHAPTER 52. PROGRESS AND PROBLEMS IN ELECTRODE KINETICS;710
16.1.1;1. INTRODUCTORY;710
16.1.2;2. THE COURSE OF DEVELOPMENT;711
16.1.3;3. ON PROBLEMS IN ELECTRODE KINETICS;719
16.1.4;4. ELECTRODIC APPLICATIONS IN TECHNOLOGY;726
16.1.5;REFERENCES;727
16.2;CHAPTER 53. CURRENT CONDUCTION BY AFLOWING ELECTROLYTE;730
16.2.1;INTRODUCTION;730
16.2.2;EXPERIMENTAL;731
16.2.3;REFERENCES;741
16.3;CHAPTER 54. SOME PROBLEMS OF THE QUANTUMMECHANICALTREATMENT OF ELECTRODE KINETICS;742
16.3.1;1. ELECTRON AND ION TRANSFERS IN ELECTRODE PROCESSES;742
16.3.2;SOME GENERAL RESULTS;743
16.3.3;TUNNELLING OF LIGHT ATOMS AND IONS;746
16.3.4;TUNNELLING WITH DIFFERENT MECHANISMS OF HYDROGEN EVOLUTION;747
16.3.5;CURRENT DENSITY - VOLTAGE RELATIONSHIP;748
16.3.6;DETERMINATION OF DIMENSIONS AND FORMS OF EQUIVALENTS POTENTIALS BARRIERS;748
16.3.7;REFERENCES;751
16.4;CHAPTER 55. STUDIES ON THE EFFECT OF ADSORPTION ON POLAROGRAPHIC CURVES;752
16.4.1;REFERENCES;760
16.5;CHAPTER 56. HIGH-SPEED CINEMATOGRAPHY AT THE DROPPING MERCURY ELECTRODE;762
16.5.1;REFERENCES;768
16.6;CHAPTER 57. THE MECHANISM OF THE HYDROGEN EVOLUTION REACTION;769
16.6.1;1. INTRODUCTION;769
16.6.2;2. TAFEL CONSTANT OF THE CATALYTIC MECHANISM;772
16.6.3;3. MODEL OF ELECTRODE SURFACE;775
16.6.4;4. TAFEL CONSTANT OF THE ELECTROCHEMICAL MECHANISM;777
16.6.5;5. pH-EFFECT ON NICKEL HYDROGEN ELECTRODE;779
16.6.6;6. pH-EFFECT ON A PLATINUM HYDROGEN ELECTRODE;780
16.6.7;7. DIFFERENTIAL CAPACITY OF NICKEL HYDROGEN ELECTRODE;782
16.6.8;8. DIFFERENTIAL CAPACITY OF MERCURY HYDROGEN ELECTRODE;785
16.6.9;9. ELECTROLYTIC SEPARATION FACTOR;786
16.6.10;10. TRANSITION BETWEEN THE CATALYTIC AND THE ELECTROCHEMICAL MECHANISMS;791
16.6.11;11. EXCLUSION OF THE SLOW DISCHARGE MECHANISM;793
16.6.12;12. TEST OF THE DUAL MECHANISM;794
16.6.13;13. CONCLUDING REMARKS;796
16.6.14;REFERENCES;796
17;PART 11: ELECTROCHEMICAL PROCESSES;800
17.1;CHAPTER 58. METHODS OF APPROACH IN THE STUDY OF ELECTROCHEMICAL REACTION MECHANISMS;802
17.1.1;1. INTRODUCTION;802
17.1.2;2. EQUILIBRIUM ADSORPTION STUDIES;804
17.1.3;3. EVALUATION AND SIGNIFICANCE OF THE POTENTIAL OF ZERO CHARGE;808
17.1.4;4. EVALUATION OF KINETIC PARAMETERS;811
17.1.5;5. STUDIES ON THE TRANSITION STATE IN ELECTROCHEMICAL REACTIONS;815
17.1.6;6. NON-STEADY STATE METHODS AND THE BEHAVIOUR OF ADSORBED INTERMEDIATES;815
17.1.7;7. CONCLUSION;818
17.1.8;REFERENCES;819
17.2;CHAPTER 59. DIFFERENTIAL ELECTROLYTIC POTENTIOMETRY– XI.* AN APPRAISAL OF THE ANALYTICAL APPLICATIONS;822
17.2.1;INTRODUCTION;822
17.2.2;METHOD;823
17.2.3;THE OPERATIONAL PARAMETERS;824
17.2.4;THE VIRTUES OF THE METHOD;825
17.2.5;RESULTS AND DISCUSSION;826
17.2.6;REFERENCES;831
17.3;CHAPTER 60. THE EFFECT OF MONOVALENT AND TRIVALENT IMPURITIES ON THE OXIDATION OF LEADIN THE VERY THIN LAYER REGION;832
17.3.1;INTRODUCTION;832
17.3.2;EXPERIMENTAL;833
17.3.3;RESULTS;833
17.3.4;DISCUSSION;835
17.3.5;REFERENCES;837
17.4;CHAPTER 61. THE ELECTROCHEMICAL ASPECTS OF SOME BIOCHEMICAL SYSTEMS-II. FURTHER INVESTIGATIONS ON THE GLUCOSE-GLUCOSE OXIDASE SYSTEM;839
17.4.1;EXPERIMENTAL;841
17.4.2;RESULTS AND DISCUSSION;843
17.4.3;REFERENCES;850
17.5;CHAPTER 62. ON THE STRUCTURE OF CHARGED INTERFACES;851
17.5.1;1. ON MODELS;851
17.5.2;2. CHARGE AND POTENTIAL AS THE DEPENDENT VARIABLES IN DISCUSSIONS OF CHARGED INTERFACES;855
17.5.3;3. DIELECTRIC CONSTANT IN THE DOUBLE LAYER;856
17.5.4;4. THE MINIMUM CAPACITANCE OF THE DOUBLE LAYER ON THE NEGATIVE BRANCH;857
17.5.5;5. SPECIFIC ADSORPTION - ITS NATURE;860
17.5.6;6. ADSORPTION ISOTHERMS FOR SUPEREQUIVALENT ADSORPTION;865
17.5.7;7. THE CAPACITANCE HUMP;867
17.5.8;8. SOLVENT DIPOLES ON ELECTRODES;871
17.5.9;9. THE DEPENDENCE OF THE ADSORPTION OF ALIPHATIC MOLECULES UPON ELECTRODE CHARGE;874
17.5.10;REFERENCES;881
18;PART 12: ELECTROWINNING AND ELECTROREFINING;884
18.1;CHAPTER 63. RECENT DEVELOPMENTS IN THE ELECTROLYTIC EXTRACTION OF LIGHT METALS;886
18.1.1;INTRODUCTION;886
18.1.2;BERYLLIUM;887
18.1.3;BORON;888
18.1.4;MAGNESIUM;889
18.1.5;ALUMINIUM;890
18.1.6;TITANIUM;896
18.1.7;REFERENCES;898
18.2;CHAPTER 64. THE SURFACE PROPERTIES OF MOLTEN MIXTURES OF SODIUM FLUORIDE, ALUMINIUM FLUORIDE AND ALUMINA;901
18.2.1;INTRODUCTION;901
18.2.2;EXPERIMENTAL;902
18.2.3;RESULTS;903
18.2.4;DISCUSSION;904
18.2.5;CONCLUSIONS;907
18.2.6;REFERENCES;907
18.3;CHAPTER 65. INFLUENCE OF COBALT IN THE ELECTRODEPOSITION OF ZINC;908
18.3.1;INTRODUCTION;908
18.3.2;"PURE" SOLUTIONS;909
18.3.3;COBALT- BEARING SOLUTIONS;913
18.3.4;CHAPTER 66. ANODIC OVERPOTENTIALS AND MECHANISM OF THE ANODE PROCESS ON CARBON IN CRYOLITE-ALUMINA ELECTROLYTES;920
18.3.5;INTRODUCTION;921
18.3.6;EXPERIMENTAL;921
18.3.7;RESULTS;925
18.3.8;REFERENCES;940
18.4;CHAPTER 67. MULTIKILOGRAM ELECTROREFINING OF PLUTONIUM METAL;942
18.4.1;FOREWORD;942
18.4.2;INTRODUCTION;942
18.4.3;EXPERIMENTAL;944
18.4.4;RESULTS;947
18.4.5;REFERENCES;950
18.5;CHAPTER 68. POLARIZATION PHENOMENA IN ALUMINIUM CELLS;951
18.5.1;1. INTRODUCTION;951
18.5.2;2. CATHODIC PROCESSES;952
18.5.3;3, ANODIC PROCESSES;953
18.5.4;4. ANODE EFFECT;954
18.5.5;5. CONCLUSIONS;956
18.5.6;REFERENCES;957
18.6;CHAPTER 69. THE EFFECTS OF STRONTIUM COMPOUNDS AND RELATED MATERIALS IN THE ELECTROLYTIC PRODUCTION OF ZINC;958
18.6.1;INTRODUCTION;958
18.6.2;EXPERIMENTAL DETAILS;960
18.6.3;RESULTS AND DISCUSSION;961
18.6.4;REFERENCES;967
18.7;CHAPTER 70. REPORT ON THE MELBOURNE SYMPOSIUM ON TUNNELING EFFECTS;968
18.7.1;REFERENCES;970
19;INDEX;972




