Georgilakis | Spotlight on Modern Transformer Design | E-Book | www.sack.de
E-Book

E-Book, Englisch, 437 Seiten

Reihe: Power Systems

Georgilakis Spotlight on Modern Transformer Design


1. Auflage 2009
ISBN: 978-1-84882-667-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 437 Seiten

Reihe: Power Systems

ISBN: 978-1-84882-667-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Spotlight on Modern Transformer Design introduces a novel approach to transformer design using artificial intelligence (AI) techniques in combination with finite element method (FEM). Today, AI is widely used for modeling nonlinear and large-scale systems, especially when explicit mathematical models are difficult to obtain or completely lacking. Moreover, AI is computationally efficient in solving hard optimization problems. Many numerical examples throughout the book illustrate the application of the techniques discussed to a variety of real-life transformer design problems, including: • problems relating to the prediction of no-load losses; • winding material selection; • transformer design optimisation; • and transformer selection. Spotlight on Modern Transformer Design is a valuable learning tool for advanced undergraduate and graduate students, as well as researchers and power engineering professionals working in electric utilities and industries, public authorities, and design offices.

Pavlos S. Georgilakis is currently assistant professor in the production engineering and management department of the Technical University of Crete, Greece. He received a diploma in electrical and computer engineering and a PhD from the National Technical University of Athens, Greece in 1990 and 2000 respectively. In his doctoral thesis, entitled 'Contribution of Artificial Intelligence Techniques in the Reduction of Distribution Transformer Iron Losses', he introduced the concept of artificial intelligence in transformer design. He worked in the transformer industry for 10 years before joining academia. From 1994 to 2003 he was with Schneider Electric AE, where he worked as transformer quality control engineer for one year, transformer design engineer for four years, transformer research and development manager for three years, and marketing manager for two years. He has considerable experience in the design, development, and manufacturing of transformers. Assistant Professor Georgilakis has designed and supervised eight research projects in the field of transformer design, which have been funded by the government and the private sector. He is the author of two books, 40 papers in international journals, and 70 papers in international conference proceedings. His current research interests include transformer design and modeling, artificial intelligence techniques in transformer design and power systems, numerical techniques in the analysis and design of power transformers, and renewable energy sources. He is a member of the IEEE, the CIGRE, and the Technical Chamber of Greece.

Georgilakis Spotlight on Modern Transformer Design jetzt bestellen!

Weitere Infos & Material


1;Foreword;6
2;Preface;8
3;Contents;13
4;1 Transformers;20
4.1;1.1 Introduction;20
4.2;1.2 Magnetic Circuits 1.2.1 General;21
4.3;1.2.2 Analysis of Magnetic Circuits;24
4.4;1.2.3 Flux Linkage;26
4.5;1.2.4 Magnetic Materials;27
4.6;1.3 Transformer Fundamentals 1.3.1 Equivalent Circuit;29
4.7;1.3.2 Derivation of Equivalent Circuit Parameters;31
4.8;1.3.3 Voltage Regulation;35
4.9;1.3.4 Efficiency;40
4.10;1.4 Transformer Electrical Characteristics 1.4.1 Rated Power;44
4.11;1.4.2 Temperature Rise;45
4.12;1.4.3 Ambient Temperature;45
4.13;1.4.4 Altitude of Installation;46
4.14;1.4.5 Impedance Voltage;46
4.15;1.4.6 No-Load Losses;46
4.16;1.4.7 Load Losses;47
4.17;1.4.8 Rated Voltages;48
4.18;1.4.9 Vector Group;48
4.19;1.4.10 Frequency;49
4.20;1.4.11 Noise;49
4.21;1.4.12 Short-Circuit Current;49
4.22;1.4.13 No-Load Current;49
4.23;1.5 Transformer Operation 1.5.1 Overloading;50
4.24;1.5.2 Parallel Operation;50
4.25;1.5.3 Load Distribution to Transformers in Parallel Operation;51
4.26;1.6 Transformer Standards and Tolerances 1.6.1 Transformer Standards;52
4.27;1.6.2 Tolerances;53
4.28;1.7 Transformer Tests;54
4.29;1.7.1 Type Tests;54
4.30;1.7.2 Routine Tests;54
4.31;1.7.3 Special Tests;56
4.32;1.8 Transformer Types;56
4.33;1.8.1 Classification According to Transformer Use;57
4.34;1.8.2 Classification According to Transformer Cooling Method;57
4.35;1.8.3 Classification According to Transformer Insulating Medium;58
4.36;1.8.4 Classification According to Transformer Core Construction;58
4.37;1.9 Transformers Studied in this Book;59
4.38;References;60
5;2 Conventional Transformer Design;61
5.1;2.1 Nomenclature;61
5.2;2.2 Introduction;65
5.3;2.3 Problem Formulation;65
5.4;2.3.1 Objective Function;66
5.5;2.3.2 Constraints;68
5.6;2.3.3 Mathematical Formulation of the TDO Problem;73
5.7;2.3.4 Characteristics of the TDO Problem;74
5.8;2.4 Conventional Transformer Design Optimization Method 2.4.1 Methodology;75
5.9;2.4.2 Case Study;78
5.10;2.4.3 Repetitive Transformer Design Process;82
5.11;2.5 Example of Transformer Design Data;84
5.12;2.5.1 Values of Description Variables;86
5.13;2.5.2 Values of Special Variables;86
5.14;2.5.3 Values of Default Variables;86
5.15;2.5.4 Values of Cost Variables;86
5.16;2.5.5 Values of Various Variables;87
5.17;2.5.6 Values of Conductor Cross-Section Calculation Variables;87
5.18;2.5.7 Values of Design Variables;87
5.19;2.6 Calculation of Volts per Turn and Thickness of Core Leg 2.6.1 Calculation of Volts per Turn;90
5.20;2.6.2 Calculation of Thickness of Core Leg;90
5.21;2.6.3 Example 2.1;92
5.22;2.7 Calculation of Layer Insulation;93
5.23;2.7.1 Layer Insulation of LV Winding;94
5.24;2.7.2 Layer Insulation of HV Winding;94
5.25;2.7.3 Example 2.2;94
5.26;2.8 Calculation of Winding and Core Dimensions;95
5.27;2.8.1 Example 2.3;95
5.28;2.9 Calculation of Core Weight and No-Load Loss;100
5.29;2.9.1 Example 2.4;102
5.30;2.10 Calculation of Inductive Part of Impedance Voltage;103
5.31;2.10.1 Example 2.5;105
5.32;2.11 Calculation of Load Loss;110
5.33;2.11.1 Example 2.6;110
5.34;2.12 Calculation of Impedance Voltage;115
5.35;2.12.1 Example 2.7;116
5.36;2.13 Calculation of Coil Length;116
5.37;2.13.1 Example 2.8;117
5.38;2.14 Calculation of Tank Dimensions;118
5.39;2.14.1 Example 2.9;118
5.40;2.15 Calculation of Winding Gradient and Oil Gradient;119
5.41;2.15.1 Example 2.10;119
5.42;2.16.1 Example 2.11;124
5.43;2.17 Calculation of the Weight of Insulating Materials;126
5.44;2.17.1 Example 2.12;126
5.45;2.18 Calculation of the Weight of Ducts;130
5.46;2.18.1 Example 2.13;130
5.47;2.19 Calculation of the Weight of Oil;131
5.48;2.19.1 Example 2.14;131
5.49;2.20 Calculation of the Weight of Sheet Steel;132
5.50;2.20.1 Example 2.15;133
5.51;2.21 Calculation of the Weight of Corrugated Panels;133
5.52;2.21.1 Example 2.16;133
5.53;2.22 Calculation of the Cost of Transformer Main Materials;133
5.54;2.22.1 Example 2.17;134
5.55;2.23 Calculation of Transformer Manufacturing Cost;135
5.56;2.23.1 Example 2.18;136
5.57;References;138
6;3 Numerical Analysis;140
6.1;3.1 Introduction 3.1.1 Magnetostatic Problems;140
6.2;3.1.2 Methods for the Solution of Magnetostatic Problems;142
6.3;3.2 Finite Element Method 3.2.1 Introduction;143
6.4;3.2.2 Applications to Power Engineering;144
6.5;3.2.3 Solution of Linear Magnetostatic Problems;145
6.6;3.2.4 Solution of Nonlinear Magnetostatic Problems;161
6.7;References;168
7;4 Classification and Forecasting;172
7.1;4.1 Introduction;172
7.2;4.2 Automatic Learning;173
7.3;4.3 Data Mining;173
7.4;4.3.1 Representation;174
7.5;4.3.2 Attribute Selection;174
7.6;4.3.3 Model Selection;174
7.7;4.3.4 Interpretation and Validation;174
7.8;4.3.5 Model Use;175
7.9;4.4 Learning Set and Test Set;175
7.10;4.4.1 Classification;175
7.11;4.4.2 Forecasting;176
7.12;4.5 Decision Trees 4.5.1 Introduction;177
7.13;4.5.2 Applications to Power Systems;178
7.14;4.5.3 General Characteristics;179
7.15;4.5.4 Top Down Induction;180
7.16;4.5.5 Optimal Splitting Rule;182
7.17;4.5.6 Stop Splitting Rule;185
7.18;4.5.7 Overview of Decision Tree Building Algorithm;188
7.19;4.5.8 Example 4.1;189
7.20;4.5.9 Example 4.2;194
7.21;4.6 Artificial Neural Networks 4.6.1 Introduction;200
7.22;4.6.2 Applications to Power Systems;201
7.23;4.6.3 ANN Types;202
7.24;4.6.4 Neuron Mathematical Model;203
7.25;4.6.5 ANN Architectures;204
7.26;4.6.6 ANN Training;206
7.27;4.6.7 ANN Configuration;220
7.28;4.6.8 Example 4.5;222
7.29;4.7 Hybrid Decision Tree–Neural Network Classifier;225
7.30;4.7.1 Example 4.6;226
7.31;References;227
8;5 Optimization;233
8.1;5.1 Introduction;233
8.2;5.2 Quadratic Programming 5.2.1 Methodology;236
8.3;5.2.2 Applications to Power Systems;239
8.4;5.2.3 Example 5.1;239
8.5;5.3 Sequential Quadratic Programming 5.3.1 Methodology;245
8.6;5.3.2 Applications to Power Systems;247
8.7;5.3.3 Example 5.2;247
8.8;5.4 Branch-and-Bound 5.4.1 Methodology;253
8.9;5.4.2 Applications to Power Systems;255
8.10;5.4.3 Example 5.3;255
8.11;5.5 Genetic Algorithms 5.5.1 Methodology;258
8.12;5.5.2 Applications to Power Systems;262
8.13;5.5.3 Example 5.4;263
8.14;References;270
9;6 Evaluation of Transformer Technical Characteristics;277
9.1;6.1 Introduction;277
9.2;6.2 No-Load Loss Classification with Decision Trees and Artificial Neural Networks 6.2.1 Introduction;278
9.3;6.2.2 Individual Core;279
9.4;6.2.3 Transformer;293
9.5;6.3 No-Load Loss Forecasting with Artificial Neural Networks 6.3.1 Introduction;304
9.6;6.3.2 Forecasting Accuracy;306
9.7;6.3.3 Individual Core;306
9.8;6.3.4 Transformer;310
9.9;6.4.2 Finite Element Model;314
9.10;6.4.3 Results and Discussion;329
9.11;References;337
10;7 Transformer Design Optimization;342
10.1;7.1 Introduction;342
10.2;7.2 No-Load Loss Reduction with Genetic Algorithms 7.2.1 Introduction;343
10.3;7.2.2 Conventional Core Grouping Process;343
10.4;7.2.3 Genetic Algorithm Solution to the TNLLR Problem;345
10.5;7.2.4 Results;352
10.6;7.3 Winding Material Selection with Decision Trees and Artificial Neural Networks 7.3.1 Introduction;354
10.7;7.3.2 Creation of Knowledge Base;355
10.8;7.3.3 Decision Trees;357
10.9;7.3.4 Adaptive Trained Neural Networks;360
10.10;7.3.5 Synthesis;370
10.11;7.4 Transformer Design Optimization with Branch-and-Bound 7.4.1 Introduction;370
10.12;7.4.2 MIP-FEM Methodology;371
10.13;7.4.3 Results and Discussion;375
10.14;7.5 Transformer Design Optimization with Genetic Algorithms 7.5.1 Introduction;379
10.15;7.5.2 Recursive GA-FEM Methodology;379
10.16;7.5.3 Results and Discussion;383
10.17;References;385
11;8 Transformer Selection;388
11.1;8.1 Introduction;388
11.2;8.2 Total Owning Cost for Industrial and Commercial Users 8.2.1 Cost Evaluation Method;389
11.3;8.2.2 Example 8.1;393
11.4;8.2.3 Example 8.2;396
11.5;8.2.4 Example 8.3;396
11.6;8.3 Total Owning Cost for Electric Utilities 8.3.1 Cost Evaluation Method;402
11.7;8.3.2 Example 8.4;405
11.8;8.3.3 Example 8.5;407
11.9;8.4 Proposed TOC Incorporating Environmental Cost 8.4.1 Introduction;411
11.10;8.4.2 Cost Evaluation Method;413
11.11;8.4.3 Example 8.6;418
11.12;8.4.4 Example 8.7;419
11.13;8.4.5 Example 8.8;420
11.14;8.4.6 Example 8.9;422
11.15;8.4.7 Example 8.10;428
11.16;References;430
12;Index;433



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.