Gopnik / Schulz | CAUSAL LEARNING | Buch | 978-0-19-517680-3 | www.sack.de

Buch, Englisch, 384 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 894 g

Gopnik / Schulz

CAUSAL LEARNING

PSYCH,PHILOS & COMPUT C
Erscheinungsjahr 2010
ISBN: 978-0-19-517680-3
Verlag: ACADEMIC

PSYCH,PHILOS & COMPUT C

Buch, Englisch, 384 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 894 g

ISBN: 978-0-19-517680-3
Verlag: ACADEMIC


The world has a causal structure, in the sense that some events make other events happen. Although understanding causal structure is essential for predicting and controlling the environment, causal structure is, at least usually, not obvious from superficial, perceptual cues. How then do our minds infer this structure? In the last few years, questions about causal inference and learning have become an important focus of investigation in many different disciplines - developmental psychology, cognitive psychology, ethology, philosophy, and computer science. As is common in scientific research, there has been relatively little interaction on the topic between these disciplines. However, in spite of the minimal interaction, a general review of the research shows the beginning of a formal way of determining how, in principle, the problem of causal inference and learning can be solved, and a wealth of methods for determining how it is, in fact, solved by children, adults, and animals. This volume brings together this research and provides a more sophisticated understanding of causal inference and learning.

Gopnik / Schulz CAUSAL LEARNING jetzt bestellen!

Weitere Infos & Material


- Part I: Causation and Intervention

- 1: Interventionist Theories of Causation in Psychological Perspective

- 2: Infants' Causal Learning: Intervention, Observation, Imitation

- 3: Detecting Causal Structure: The Role of Interventions in Infants' Understanding of Psychological and Physical Causal Relations

- 4: An Interventionist Approach to Causation in Psychology

- 5: Learning From Doing: Intervention and Causal Inference

- 6: Causal Reasoning Through Intervention

- 7: On the Importance of Causal Taxonomy

- Part II: Causation and Probability

- Introduction to Part II: Causation and Probability

- 8: Teaching the Normative Theory of Causal Reasoning

- 9: Interactions Between Causal and Statistical Learning

- 10: Beyond Covariation: Cues to Causal Structure

- 11: Theory Unification and Graphical Models in Human Categorization

- 12: Essentialism as a Generative Theory of Classification

- 13: Data-Mining Probalists or Experimental Determinists? A Dialogue on the Principles Underlying Causal Learning in Children

- 14: Learning the Structure of Deterministic Systems

- Part III: Causation, Theories, and Mechanisms

- Introduction to Part III: Causation, Theories, and Mechanisms

- 15: Why Represent Causal Relations?

- 16: Causal Reasoning as Informed by the Early Development of Explanations

- 17: Dynamic Interpretations of Covariation Data

- 18: Statistical Jokes and Social Effects: Intervention and Invariance in Causal Relations

- 19: Intuitive Theories as Grammars for Causal Inference

- 20: Two Proposals for Causal Grammars



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.