Grady / Polimeni | Discrete Calculus | E-Book | www.sack.de
E-Book

E-Book, Englisch, 366 Seiten

Grady / Polimeni Discrete Calculus

Applied Analysis on Graphs for Computational Science
1. Auflage 2010
ISBN: 978-1-84996-290-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Applied Analysis on Graphs for Computational Science

E-Book, Englisch, 366 Seiten

ISBN: 978-1-84996-290-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This unique text brings together into a single framework current research in the three areas of discrete calculus, complex networks, and algorithmic content extraction. Many example applications from several fields of computational science are provided.

Grady / Polimeni Discrete Calculus jetzt bestellen!

Weitere Infos & Material


1;Preface;6
2;Contents;7
3;Acronyms;12
4;Discrete Calculus: History and Future;14
4.1;Discrete Calculus;14
4.1.1;Origins of Vector Calculus;15
4.1.2;Origins of Discrete Calculus;16
4.1.3;Discrete vs. Discretized;17
4.2;Complex Networks;19
4.3;Content Extraction;20
4.4;Organization of the Book;21
4.5;Intended Audience;21
5;A Brief Review of Discrete Calculus;23
5.1;Introduction to Discrete Calculus;24
5.1.1;Topology and the Fundamental Theorem of Calculus;25
5.1.2;Differential Forms;27
5.1.2.1;Exterior Algebra and Antisymmetric Tensors;28
5.1.2.1.1;The Vector Spaces of p-Vectors and p-Forms;28
5.1.2.1.2;Manifolds, Tangent Spaces, and Cotangent Spaces;31
5.1.2.1.3;The Metric Tensor: Mapping p-Forms to p-Vectors;34
5.1.2.2;Differentiation and Integration of Forms;37
5.1.2.2.1;The Exterior Derivative;37
5.1.2.2.2;The Poincaré Lemma;41
5.1.2.3;The Hodge Star Operator;43
5.1.2.3.1;The Codifferential Operator and the Laplace-de Rham Operator;47
5.1.2.4;Differential Forms and Linear Pairings;48
5.1.3;Discrete Calculus;49
5.1.3.1;Discrete Domains;50
5.1.3.1.1;Orientation;53
5.1.3.1.2;The Incidence Matrix;55
5.1.3.1.3;Chains;56
5.1.3.1.4;The Discrete Boundary Operator;57
5.1.3.2;Discrete Forms and the Coboundary Operator;59
5.1.3.3;Primal and Dual Complexes;61
5.1.3.4;The Role of a Metric: the Metric Tensor, the Discrete Hodge Star Operator, and Weighted Complexes;65
5.1.3.4.1;The Metric Tensor and the Associated Inner Product;65
5.1.3.4.2;The Discrete Hodge Star Operator;66
5.1.3.4.3;Weights;68
5.1.3.4.4;The Volume Cochain;68
5.1.3.5;The Dual Coboundary Operator;70
5.1.3.6;The Discrete Laplace-de Rham Operator;71
5.1.4;Structure of Discrete Physical Laws;74
5.1.5;Examples of Discrete Calculus;74
5.1.5.1;Fundamental Theorem of Calculus and the Generalized Stokes' Theorem;76
5.1.5.1.1;Generalized Stokes' Theorem on a 1-Complex;76
5.1.5.1.2;Comparison with Finite Differences Operators;80
5.1.5.1.3;Generalized Stokes' Theorem on a 2-Complex;82
5.1.5.1.4;Generalized Stokes' Theorem on a 3-Complex;83
5.1.5.2;The Helmholtz Decomposition;84
5.1.5.2.1;Algorithm for Computing a Helmholtz Decomposition of a Flow Field;87
5.1.5.3;Matrix Representation of Discrete Calculus Identities;88
5.1.5.3.1;Integration by Parts;88
5.1.5.3.2;Other Identities;89
5.1.5.4;Elliptic Equations;90
5.1.5.4.1;Variational Principles;93
5.1.5.5;Diffusion;93
5.1.5.6;Advection;97
5.1.6;Concluding Remarks;99
5.2;Circuit Theory and Other Discrete Physical Models;101
5.2.1;Circuit Laws;103
5.2.2;Steady-State Solutions;104
5.2.2.1;Dependent Sources;107
5.2.2.2;Energy Minimization;109
5.2.2.2.1;Power Minimization with Nonlinear Resistors;111
5.2.3;AC Circuits;111
5.2.4;Connections Between Circuit Theory and Other Discrete Domains;114
5.2.4.1;Spring Networks;114
5.2.4.2;Random Walks;116
5.2.4.3;Gaussian Markov Random Fields;120
5.2.4.4;Tree Counting;122
5.2.4.5;Linear Algebra Applied to Circuit Analysis;127
5.2.4.5.1;The Delta-Wye and Star-Mesh Transforms;127
5.2.4.5.2;Minimum-Degree Orderings;129
5.2.5;Conclusion;131
6;Applications of Discrete Calculus;133
6.1;Building a Weighted Complex from Data;134
6.1.1;Determining Edges and Cycles;135
6.1.1.1;Defining an Edge Set;135
6.1.1.1.1;Edges from an Ambient Metric;136
6.1.1.1.2;Edges by k-Nearest Neighbors;137
6.1.1.1.3;Edges from a Delaunay Triangulation;137
6.1.1.1.4;Adding Edges via the Watts-Strogatz Model;137
6.1.1.2;Defining a Cycle Set;138
6.1.1.2.1;Defining Cycles Geometrically: Cycles from an Embedding;139
6.1.1.2.2;Defining Cycles Algebraically;140
6.1.1.2.3;Cycle Sets and Duality;143
6.1.2;Deriving Edge Weights;144
6.1.2.1;Edge Weights to Reflect Geometry;144
6.1.2.2;Edge Weights to Penalize Data Outliers;145
6.1.2.2.1;Univariate Data;145
6.1.2.2.2;Computing Weights from Multivariate Data;150
6.1.2.3;Edge Weights to Cause Repulsion;152
6.1.2.4;Edge Weights to Represent Joint Statistics;153
6.1.2.5;Deducing Edge Weights from Observations;153
6.1.2.5.1;The Underdetermined Case;154
6.1.2.5.2;The Overdetermined/Inconsistent Case;155
6.1.3;Obtaining Higher-Order Weights to Penalize Outliers;156
6.1.3.1;Weights Beyond Flows;158
6.1.4;Metrics Defined on a Complex;159
6.1.5;Conclusion;162
6.2;Filtering on Graphs;164
6.2.1;Fourier and Spectral Filtering on a Graph;165
6.2.1.1;Graphs that Are Not Shift-Invariant;168
6.2.1.2;The Origins of High Frequency Noise;171
6.2.2;Energy Minimization Methods for Filtering;172
6.2.2.1;The Basic Energy Minimization Model;172
6.2.2.1.1;Iterative Minimization;173
6.2.2.2;Extended Basic Energy Model;176
6.2.2.3;The Total Variation Model;177
6.2.3;Filtering with Implicit Discontinuities;179
6.2.4;Filtering with Explicit, but Unknown, Discontinuities;181
6.2.5;Filtering by Gradient Manipulation;183
6.2.6;Nonlocal Filtering;183
6.2.7;Filtering Vectors and Flows;184
6.2.7.1;Translating Scalar Filtering to Flow Filtering;185
6.2.8;Filtering Higher-Order Cochains;188
6.2.9;Applications;189
6.2.9.1;Image Processing;189
6.2.9.1.1;Regular Graphs and Space-Invariant Processing;189
6.2.9.1.2;Space-Variant Imaging;191
6.2.9.2;Three-Dimensional Mesh Filtering;194
6.2.9.2.1;Mesh Fairing;194
6.2.9.3;Filtering Data on a Surface;196
6.2.9.4;Geospatial Data;201
6.2.9.5;Filtering Flow Data-Brain Connectivity;202
6.2.10;Conclusion;206
6.3;Clustering and Segmentation;207
6.3.1;Targeted Clustering;208
6.3.1.1;Primal Targeted Clustering;209
6.3.1.1.1;Probabilities Assigned to a Subset;210
6.3.1.1.2;Known Labels for a Subset of Nodes;213
6.3.1.1.3;Negative Weights;217
6.3.1.2;Dual Targeted Clustering;218
6.3.1.2.1;Dual Algorithms in Three Dimensions;221
6.3.2;Untargeted Clustering;223
6.3.2.1;Primal Untargeted Clustering;224
6.3.2.2;Dual Untargeted Clustering;228
6.3.3;Semi-targeted Clustering;229
6.3.3.1;The k-Means Model;229
6.3.4;Clustering Higher-Order Cells;235
6.3.4.1;Clustering Edges;235
6.3.4.1.1;Targeted Edge Clustering;235
6.3.4.1.2;Untargeted Edge Clustering;236
6.3.5;Applications;237
6.3.5.1;Image Segmentation;237
6.3.5.2;Social Networks;243
6.3.5.3;Machine Learning and Classification;244
6.3.5.4;Gene Expression;248
6.3.6;Conclusion;250
6.4;Manifold Learning and Ranking;251
6.4.1;Manifold Learning;252
6.4.1.1;Multidimensional Scaling and Isomap;253
6.4.1.2;Laplacian Eigenmaps and Spectral Coordinates;255
6.4.1.3;Locality Preserving Projections;257
6.4.1.4;Relationship to Clustering;259
6.4.1.5;Manifold Learning on Edge Data;259
6.4.2;Ranking;261
6.4.2.1;PageRank;261
6.4.2.1.1;PageRank as Advection;263
6.4.2.2;HITS;264
6.4.3;Applications;265
6.4.3.1;Shape Characterization;265
6.4.3.2;Point Correspondence;268
6.4.3.3;Web Search;270
6.4.3.4;Judicial Citation;272
6.4.4;Conclusion;274
6.5;Measuring Networks;275
6.5.1;Measures of Graph Connectedness;276
6.5.1.1;Graph Distance;276
6.5.1.2;Node Centrality;277
6.5.1.3;Distance-Based Properties of a Graph;278
6.5.2;Measures of Graph Separability;282
6.5.2.1;Clustering Measures;282
6.5.2.2;Small-World Graphs;285
6.5.3;Topological Measures;287
6.5.4;Geometric Measures;289
6.5.4.1;Discrete Gaussian Curvature;290
6.5.4.2;Discrete Mean Curvature;291
6.5.5;Applications;293
6.5.5.1;Social Networks;293
6.5.5.2;Chemical Graph Theory;294
6.5.6;Conclusion;296
7;Appendix A Representation and Storage of a Graph and Complex;298
7.1;General Representations for Complexes;298
7.1.1;Cells List Representation;298
7.1.2;Operator Representation;299
7.2;Representation of 1-Complexes;300
7.2.1;Neighbor List Representation;300
8;Appendix B Optimization;302
8.1;Real-Valued Optimization;303
8.1.1;Unconstrained Direct Solutions;304
8.1.2;Constrained Direct Solutions;305
8.1.2.1;Optimization with Boundary Conditions;305
8.1.2.2;Optimization with Linear Equality Constraints;308
8.1.2.3;Optimization with Linear Inequality Constraints;310
8.1.2.4;Ratio Optimization;312
8.1.3;Descent Methods;315
8.1.3.1;Gradient Descent;315
8.1.3.2;Newton's Method;315
8.1.3.3;Descent Methods for Constrained Optimization;318
8.1.4;Nonconvex Energy Optimization over Real Variables;319
8.2;Integer-Valued Optimization;319
8.2.1;Linear Objective Functions;319
8.2.2;Quadratic Objective Functions;321
8.2.2.1;Pure Quadratic;321
8.2.2.2;General Pairwise Terms;323
8.2.2.3;Higher-Order Terms;325
8.2.3;General Integer Programming Problems;325
9;Appendix C The Hodge Theorem: A Generalization of the Helmholtz Decomposition;326
9.1;The Helmholtz Theorem;326
9.2;The Hodge Decomposition;333
10;Summary of Notation;338
11;References;341
12;Index;359
13;Color Plates;366



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.