E-Book, Englisch, 597 Seiten, eBook
Greiner Classical Mechanics
2. Auflage 2010
ISBN: 978-3-642-03434-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Systems of Particles and Hamiltonian Dynamics
E-Book, Englisch, 597 Seiten, eBook
ISBN: 978-3-642-03434-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
The series of texts on Classical Theoretical Physics is based on the highly successful series of courses given by Walter Greiner at the Johann Wolfgang Goethe University in Frankfurt am Main, Germany. Intended for advanced undergraduates and beginning graduate students, the volumes in the series provide not only a complete survey of classical theoretical physics but also an enormous number of worked examples and problems to show students clearly how to apply the abstract principles to realistic problems.
This edition contains two new chapters on generalized theory of canonical transformations and the Hamilton-Lagrange formalism, as well as new sections in the chapter on Hamiltonian theory. All chapters have been completely revised and updated and numerous new exercises have been added.
Zielgruppe
Graduate
Autoren/Hrsg.
Weitere Infos & Material
Newtonian Mechanics in Moving Coordinate Systems.- Newton’s Equations in a Rotating Coordinate System.- Free Fall on the Rotating Earth.- Foucault’s Pendulum.- Mechanics of Particle Systems.- Degrees of Freedom.- Center of Gravity.- Mechanical Fundamental Quantities of Systems of Mass Points.- Vibrating Systems.- Vibrations of Coupled Mass Points.- The Vibrating String.- Fourier Series.- The Vibrating Membrane.- Mechanics of Rigid Bodies.- Rotation About a Fixed Axis.- Rotation About a Point.- Theory of the Top.- Lagrange Equations.- Generalized Coordinates.- D’Alembert Principle and Derivation of the Lagrange Equations.- Lagrange Equation for Nonholonomic Constraints.- Special Problems.- Hamiltonian Theory.- Hamilton’s Equations.- Canonical Transformations.- Hamilton–Jacobi Theory.- Extended Hamilton–Lagrange Formalism.- Extended Hamilton–Jacobi Equation.- Nonlinear Dynamics.- Dynamical Systems.- Stability of Time-Dependent Paths.- Bifurcations.- Lyapunov Exponents and Chaos.- Systemswith Chaotic Dynamics.- On the History of Mechanics.- Emergence of Occidental Physics in the Seventeenth Century.