Griebel / Schweitzer | Meshfree Methods for Partial Differential Equations II | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 43, 311 Seiten

Reihe: Lecture Notes in Computational Science and Engineering

Griebel / Schweitzer Meshfree Methods for Partial Differential Equations II


1. Auflage 2006
ISBN: 978-3-540-27099-7
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 43, 311 Seiten

Reihe: Lecture Notes in Computational Science and Engineering

ISBN: 978-3-540-27099-7
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark





Griebel (Eds), Meshfree Methods for Partial Differential Equations II (LNCSE 43)

Griebel / Schweitzer Meshfree Methods for Partial Differential Equations II jetzt bestellen!

Weitere Infos & Material


1;Preface;5
2;Contents;6
3;A Particle Strategy for Solving the Fokker- Planck Equation Modelling the Fiber Orientation Distribution in Steady Recirculating Flows Involving Short Fiber Suspensions;8
3.1;1 Introduction;8
3.2;2 A Particle Discretisation;11
3.3;3 Numerical Examples;17
3.4;4 Conclusions;21
3.5;References;22
4;Extended Meshfree Method for Elastic and Inelastic Media;24
4.1;1 Introduction;24
4.2;2 Review of Extended Meshfree Method;25
4.3;3 Extended Meshfree Method for Elastic Boundary Value Problems;30
4.4;4 Extended Meshfree Method for Inelastic Boundary Value Problems;35
4.5;5 Conclusions;42
4.6;6 Appendix;43
4.7;References;43
5;Meshfree Petrov-Galerkin Methods for the Incompressible Navier- Stokes Equations;46
5.1;1 Introduction;46
5.2;2 Stabilisation Schemes;47
5.3;3 The Stabilisation Parameter;49
5.4;4 Numerical Results;56
5.5;5 Conclusion;59
5.6;References;60
6;The a-shape Based Natural Element Method in Solid and Fluid Mechanics;62
6.1;1 Introduction;62
6.2;2 Natural Neighbour Galerkin Methods;63
6.3;3 Natural Element Methods for Incompressible Media;65
6.4;4 The a-shape based Natural Element Method;69
6.5;5 Numerical Examples;70
6.6;6 Closing Remarks;74
6.7;References;75
7;A Particle-Partition of Unity Method Part VI: A p- robust Multilevel Solver;78
7.1;1 Introduction;78
7.2;2 Partition of Unity Method;80
7.3;3 Multilevel Solution of Resulting Linear System;84
7.4;4 Numerical Results;94
7.5;5 Concluding Remarks;97
7.6;References;98
8;Enriched Reproducing Kernel Approximation: Reproducing Functions with Discontinuous Derivatives;100
8.1;1 Introduction;100
8.2;2 Enriched Reproducing Kernel Particle Approximation;102
8.3;3 The Case of a Function with Discontinuous Derivatives;104
8.4;4 Properties of the Moment Matrix;105
8.5;5 About the Resulting Shape Function and its Derivatives;107
8.6;6 Numerical Example;111
8.7;7 Conclusion;113
8.8;References;114
9;Reproducing Kernel Element Interpolation: Globally Conforming Im/ Cn/ Pk Hierarchies;116
9.1;1 Introduction;116
9.2;2 Reproducing Kernel Element Method;117
9.3;3 Globally Conforming Im/Cn/Pk Hierarchy I;122
9.4;4 Globally Conforming Im/Cn/Pk Hierarchy II;127
9.5;5 Numerical Examples;133
9.6;6 Closure;137
9.7;References;138
10;Multi-scale Analysis Using Two Influence Radii in EFGM;140
10.1;1 Introduction;140
10.2;2 P-like Adaptivity Analysis;142
10.3;3 Multi-Scale Analysis Using Two Nodal Points Layouts;144
10.4;4 Conclusion;154
10.5;References;154
11;Solution of a Dynamic Main Crack Interaction with a System of Micro- Cracks by the Element Free Galerkin Method;156
11.1;1 Introduction;156
11.2;2 The EFG Method for Dynamic Linear Elastic Fracture Mechanics;157
11.3;3 Solution of Multi-Crack Problems by the EFG Method;160
11.4;4 Individual Crack Subjected to Pulse Loading;164
11.5;5 Main Crack Propagation in a Field of Interacting Flaws under Dynamic Pulse Loading;168
11.6;6 Conclusions;173
11.7;References;174
12;Finite Cover Method for Physically and Geometrically Nonlinear Problems;176
12.1;1 Introduction;176
12.2;2 Finite Cover Method;177
12.3;3 Application to Evolution Problems of Failure Surfaces;182
12.4;4 Application to Finite Deformation Problems;189
12.5;5 Conclusion;194
12.6;References;196
13;A Numerical Scheme for Solving Incompressible and Low Mach Number Flows by the Finite Pointset Method;198
13.1;1 Introduction;198
13.2;2 Governing Equations;200
13.3;3 Numerical Scheme;201
13.4;4 Numerical Tests;207
13.5;References;212
14;SPH Renormalized Hybrid Methods for Conservation Laws: Applications to Free Surface Flows;214
14.1;1 Introduction;214
14.2;2 Classical Recipes;215
14.3;3 Weak Formulation;219
14.4;4 Application to Euler Equations;226
14.5;5 Applications;227
14.6;References;235
15;Discontinuous Radial Basis Function Approximations for Meshfree Methods;238
15.1;1 Introduction;238
15.2;2 Radial Basis Function Approximation;240
15.3;3 Approximation for Discontinuous Functions by Radial Basis Function Interpolation;241
15.4;4 Discrete Equations for Discontinuous Radial Basis Function Approximation;245
15.5;5 Example;247
15.6;6 Conclusions;256
15.7;References;258
16;Treating Moving Interfaces in Thermal Models with the C- NEM;262
16.1;1 Introduction;262
16.2;2 Problem Formulation;264
16.3;3 The Constrained Natural Element Method (C-NEM);265
16.4;4 C-NEM Discretization;269
16.5;5 Numerical Example;270
16.6;6 Conclusion;272
16.7;References;274
17;Bridging Scale Particle and Finite Element Methods;278
17.1;1 Introduction;278
17.2;2 Review of Multiscale Simulation Methods;280
17.3;3 Concurrent Bridging Scale Method;281
17.4;4 Bridging Scale Computations for Localized Failure;291
17.5;5 Conclusions;294
17.6;References;295
18;Color Plates;299



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.