Grinstein | Coarse Grained Simulation and Turbulent Mixing | Buch | 978-1-107-13704-2 | sack.de

Buch, Englisch, 450 Seiten, HC gerader Rücken kaschiert, Format (B × H): 175 mm x 250 mm, Gewicht: 1006 g

Grinstein

Coarse Grained Simulation and Turbulent Mixing

Buch, Englisch, 450 Seiten, HC gerader Rücken kaschiert, Format (B × H): 175 mm x 250 mm, Gewicht: 1006 g

ISBN: 978-1-107-13704-2
Verlag: Cambridge University Press


Small-scale turbulent flow dynamics is traditionally viewed as universal and as enslaved to that of larger scales. In coarse grained simulation (CGS), large energy-containing structures are resolved, smaller structures are spatially filtered out, and unresolved subgrid scale (SGS) effects are modeled. Coarse Grained Simulation and Turbulent Mixing reviews our understanding of CGS. Beginning with an introduction to the fundamental theory the discussion then moves to the crucial challenges of predictability. Next, it addresses verification and validation, the primary means of assessing accuracy and reliability of numerical simulation. The final part reports on the progress made in addressing difficult non-equilibrium applications of timely current interest involving variable density turbulent mixing. The book will be of fundamental interest to graduate students, research scientists, and professionals involved in the design and analysis of complex turbulent flows.
Grinstein Coarse Grained Simulation and Turbulent Mixing jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Preface Fernando F. Grinstein; Prologue Fernando F. Grinstein; Part I. Fundamentals: 1. Proof of concept - enslaved turbulent mixing Fernando F. Grinstein and Adam J. Wachtor; 2. A minimum turbulence state for coarse grained simulation Ye Zhou; 3. Finite scale Navier–Stokes - compressible hydrodynamics at second order L. G. Margolin; 4. Material conservation of passive scalar mixing in finite scale Navier–Stokes fluid turbulence J. R. Ristorcelli; Part II. Challenges: 5. Subgrid and supergrid modeling Fernando F. Grinstein; 6. Cloud modeling - an example of why small scale details matter for accurate prediction Jon Reisner; 7. Verification, validation and uncertainty quantification for coarse grained simulation William J. Rider, James R. Kamm and V. Gregory Weirs; Part III. Complex Mixing Consequences: 8. Shock driven turbulence Fernando F. Grinstein, A. A. Gowardhan and J. R. Ristorcelli; 9. Laser driven turbulence in high energy density physics and inertial confinement fusion experiments Brian M. Haines, Fernando F. Grinstein, Leslie Welser-Sherrill and James R. Fincke; 10. Drive asymmetry, convergence, and turbulence in inertial confinement fusion implosions Vincent A. Thomas and Robert J. Kares; 11. Rayleigh–Taylor driven turbulence Nicholas A. Denissen, Jon Reisner, Malcolm Andrews and Bertrand Rollin; 12. Spray combustion in swirling flow Suresh Menon and Reetesh Ranjan; 13. Afterburning combustion behind explosive blasts E. Fedina, C. Fureby, K. C. Gottiparthi and Suresh Menon; Epilogue Fernando F. Grinstein.


Grinstein, Fernando F.
Fernando F. Grinstein is a Scientist at the X-Computational Physics Division of the Los Alamos National Laboratory. He is a world leader in issues of large eddy simulation (LES) of turbulent material mixing physics in complex multidisciplinary applications. He has led integration efforts of the pioneers of the ILES technique in workshops and special meetings worldwide, and in the first comprehensive description of the methodology, Implicit LES: Computing Turbulent Flow Dynamics, written with Len Margolin and William Rider.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.