Buch, Englisch, 574 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 879 g
Buch, Englisch, 574 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 879 g
ISBN: 978-1-4419-2324-0
Verlag: Springer
This book is an informal, although systematic presentation of lectures given by the authors on Boolean algebras, intended for advanced undergraduates and beginning graduate students. In a bold and refreshing style, this book treats Boolean algebras, develops some intriguing ideas, and provides rare insights. Exercises are generously sprinkled throughout the text for course study.
This book can be considered a sequel to Paul Halmos's Lectures on Boolean Algebras, with the following changes: (1) the material in every section has been explained in more detail, and is now more accessible to undergraduates; (2) there are three times as many exercises, and the authors have now prepared a solutions manual; (3) a more careful explanation of the relationship between Boolean rings and Boolean algebras has been added; (4) thirteen chapters have been added, including chapters on topology and on continuous functions, a chapter on the extension theorem for homomorphisms, a new chapter on congruences and quotient algebras, a chapter on the lattice of ideals, and a chapter on duality theory for products.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Mathematik | Informatik Mathematik Algebra Algebraische Strukturen, Gruppentheorie
- Mathematik | Informatik Mathematik Mathematik Allgemein Mathematische Logik
- Mathematik | Informatik EDV | Informatik Informatik Logik, formale Sprachen, Automaten
Weitere Infos & Material
Boolean Rings.- Boolean Algebras.- Boolean Algebras Versus Rings.- The Principle of Duality.- Fields of Sets.- Elementary Relations.- Order.- Infinite Operations.- Topology.- Regular Open Sets.- Subalgebras.- Homomorphisms.- Extensions of Homomorphisms.- Atoms.- Finite Boolean Algebras.- Atomless Boolean Algebras.- Congruences and Quotients.- Ideals and Filters.- Lattices of Ideals.- Maximal Ideals.- Homomorphism and Isomorphism Theorems.- The Representation Theorem.- Canonical Extensions.- Complete Homomorphisms and Complete Ideals.- Completions.- Products of Algebras.- Isomorphisms of Factors.- Free Algebras.- Boolean s-algebras.- The Countable Chain Condition.- Measure Algebras.- Boolean Spaces.- Continuous Functions.- Boolean Algebras and Boolean Spaces.- Duality for Ideals.- Duality for Homomorphisms.- Duality for Subalgebras.- Duality for Completeness.- Boolean s-spaces.- The Representation of s-algebras.- Boolean Measure Spaces.- Incomplete Algebras.- Duality for Products.- Sums of Algebras.- Isomorphisms of Countable Factors.




