Han | Recent Advances in Next-Generation Data Science | Buch | 978-3-031-67870-7 | sack.de

Buch, Englisch, 236 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 382 g

Reihe: Communications in Computer and Information Science

Han

Recent Advances in Next-Generation Data Science

Third Southwest Data Science Conference, SDSC 2024, Waco, TX, USA, March 22, 2024, Revised Selected Papers
2024
ISBN: 978-3-031-67870-7
Verlag: Springer Nature Switzerland

Third Southwest Data Science Conference, SDSC 2024, Waco, TX, USA, March 22, 2024, Revised Selected Papers

Buch, Englisch, 236 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 382 g

Reihe: Communications in Computer and Information Science

ISBN: 978-3-031-67870-7
Verlag: Springer Nature Switzerland


This book constitutes the refereed proceedings of the Third Southwest Data Science Conference, on Recent advances in next-generation data science, SDSC 2024, held in Waco, TX, USA, in March 22, 2024.

The 15 full papers presented were carefully reviewed and selected from 59 submissions. These papers focus on AI security in next-generation data science and address a range of challenges, from protecting sensitive data to mitigating adversarial threats.

Han Recent Advances in Next-Generation Data Science jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


.- Wasserstein graph convolutional network with attention for imbalanced scRNA-seq data knowledge discovery.
.- Toward a Unified Cybersecurity Knowledge Graph: Leveraging Ontologies and Open Data Sources.
.- How does normalization impact clustering?.
.- Quantitative Stock Market Modeling Using Multivariate Geometric Random Walk.
.- Disease Similarity and Disease Clustering.
.- Composition analysis and identification of ancient glass products.
.- Data entropy-based imbalanced learning.
.- Analysis of the changes in microbial community during the fermentation of Feng-flavour Baijiu.
.- EnhanciGraph: Visualizing Enhancer-Gene Interactions.
.- Event-triggered Control for Synchronization of Chaotic Delayed Lur’e Systems with Stochastic cyber-attacks.
.- In-game Win Prediction Models for Cricket.
.- Finite-time outer average synchronization between two coupled heterogeneous complex dynamical
networks and its application in secure communication.
.- Classification of in-situ Solar Wind Data Measured by Solar Orbiter/SWA-PAS and HIS using
Machine Learning.
.- Node classification with Multi-hop Graph Convolutional Network.
.- PyDaskShift: Automatically Convert Loop-Based Sequential Programs to Distributed Parallel Programs.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.