Buch, Englisch, 350 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 449 g
Foundations and Applications
Buch, Englisch, 350 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 449 g
ISBN: 978-0-443-27457-2
Verlag: Elsevier Science
Predictive Digital Twins: Foundations and Applications addresses the theoretical foundations, practical applications, and emerging trends associated with predictive digital twins. Specifically focusing on predictive capabilities, digital twins designated for this purpose are commonly known as predictive digital twins. Despite the growing recognition of their importance, discussions surrounding predictive digital twins remain fragmented and lacking a comprehensive resource. This gap becomes particularly pronounced in the academic world, where, as a university professor teaching a master's program course in digital twins, there arises a pressing need for a dedicated reference book to furnish students with a structured and in-depth exploration of predictive digital twins.
The book fills the existing void in literature and academia, providing students, researchers, and practitioners with a valuable resource to enhance their understanding of this cutting-edge concept. The digital twin concept stands as a pivotal facilitator in the ongoing Industry 4.0 revolution, with one of its most significant advantages lying in its capacity to offer precise predictions.
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Robotik
- Technische Wissenschaften Energietechnik | Elektrotechnik Elektrotechnik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Technische Wissenschaften Technik Allgemein Technik: Allgemeines
- Mathematik | Informatik EDV | Informatik Informatik Mensch-Maschine-Interaktion
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Maschinenbau
Weitere Infos & Material
1. Introduction to digital twins
2. Fundamental aspects of predictive digital twins
3. Modelling and simulation of dynamic systems
4. State and parameter estimation
5. Sensor and actuator fault diagnosis
6. Data-driven discovery of governing equations
7. Prediction methods for digital twins
8. Model-based predictive digital twins
9. Data-driven predictive digital twins
10. Case study I: predictive digital twins for autonomous marine vessels
11. Case study II: predictive digital twins for unmanned aerial vehicles
12. Case study III: predictive digital twins for wind energy applications
13. Case study IV: predictive digital twins for healthcare applications
14. Future of predictive digital twins




