E-Book, Englisch, 596 Seiten
Hatzfeld / Kern Engineering Haptic Devices
2. Auflage 2014
ISBN: 978-1-4471-6518-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
A Beginner's Guide
E-Book, Englisch, 596 Seiten
Reihe: Springer Series on Touch and Haptic Systems
ISBN: 978-1-4471-6518-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
In this greatly reworked second edition of Engineering Haptic Devices the psychophysic content has been thoroughly revised and updated. Chapters on haptic interaction, system structures and design methodology were rewritten from scratch to include further basic principles and recent findings. New chapters on the evaluation of haptic systems and the design of three exemplary haptic systems from science and industry have been added.This book was written for students and engineers that are faced with the development of a task-specific haptic system. It is a reference book for the basics of haptic interaction and existing haptic systems and methods as well as an excellent source of information for technical questions arising in the design process of systems and components.Divided into two parts, part 1 contains typical application areas of haptic systems and a thorough analysis of haptics as an interaction modality. The role of the user in the design of haptic systems is discussed and relevant design and development stages are outlined. Part II presents all relevant problems in the design of haptic systems including general system and control structures, kinematic structures, actuator principles and sensors for force and kinematic measures. Further chapters examine interfaces and software development for virtual reality simulations.
Autoren/Hrsg.
Weitere Infos & Material
1;Series Editors’ Foreword;6
2;Preface;8
3;Contents;12
4;Symbols;20
5;Abbreviations;27
6;Contributors;29
7;Further Contributions;33
8;Part IBasics;34
9;1 Motivation and Application of Haptic Systems;35
9.1;1.1 Philosophical and Social Aspects;36
9.1.1;1.1.1 Haptics as a Physical Being's Boundary;36
9.1.2;1.1.2 Formation of the Sense of Touch;37
9.1.3;1.1.3 Touchable Art and Haptic Aesthetics;38
9.2;1.2 Technical Definitions of Haptics;40
9.2.1;1.2.1 Definitions of Haptic Interactions;41
9.2.2;1.2.2 Taxonomy of Haptic Perception;43
9.3;1.3 Application Areas of Haptic Systems;45
9.3.1;1.3.1 Telepresence, Teleaction, and Assistive Systems;47
9.3.2;1.3.2 Virtual Environments;49
9.3.3;1.3.3 Noninvasive Medical Applications;52
9.3.4;1.3.4 Communication;53
9.3.5;1.3.5 Why Use a Haptic System?;54
9.4;1.4 Conclusions;55
9.5;References;55
10;2 Haptics as an Interaction Modality;61
10.1;2.1 Haptic Perception;61
10.1.1;2.1.1 Physiological Basis;62
10.1.2;2.1.2 Psychophysical Description of Perception;70
10.1.3;2.1.3 Characteristic Values of Haptic Perception;85
10.1.4;2.1.4 Further Aspects of Haptic Perception;97
10.2;2.2 Concepts of Interaction;101
10.2.1;2.2.1 Haptic Exploration of Objects;101
10.2.2;2.2.2 Active and Passive Touch;101
10.2.3;2.2.3 Gestures;103
10.2.4;2.2.4 Human Movement Capabilities;104
10.3;2.3 Interaction Using Haptic Systems;105
10.3.1;2.3.1 Haptic Displays and General Input Devices;106
10.3.2;2.3.2 Assistive Systems;108
10.3.3;2.3.3 Haptic Interfaces;108
10.3.4;2.3.4 Manipulators;111
10.3.5;2.3.5 Teleoperators;111
10.3.6;2.3.6 Comanipulators;112
10.3.7;2.3.7 Haptic System Control;113
10.4;2.4 Engineering Conclusions;113
10.4.1;2.4.1 A Frequency-Dependent Model of Haptic Properties;113
10.4.2;2.4.2 Stiffnesses;116
10.4.3;2.4.3 One Kilohertz: Significance for the Mechanical Design;116
10.4.4;2.4.4 Perception-Inspired Concepts for Haptic System Design;119
10.5;References;121
11;3 The User's Role in Haptic System Design;133
11.1;3.1 The User as Mechanical Load;133
11.1.1;3.1.1 Mapping of Frequency Ranges onto the User's Mechanical Model;133
11.1.2;3.1.2 Modeling the Mechanical Impedance;136
11.1.3;3.1.3 Grips and Grasps;137
11.1.4;3.1.4 Measurement Setup and Equipment;139
11.1.5;3.1.5 Models;140
11.1.6;3.1.6 Modeling Parameters;142
11.1.7;3.1.7 Comparison with Existing Models;150
11.1.8;3.1.8 Final Remarks on Impedances;152
11.2;3.2 The User as a Measure of Quality;152
11.2.1;3.2.1 Resolution of Haptic Systems;152
11.2.2;3.2.2 Errors and Reproducibility;153
11.2.3;3.2.3 Quality of Haptic Interaction;153
11.3;References;154
12;4 Development of Haptic Systems;156
12.1;4.1 Application of Mechatronic Design Principles to Haptic Systems;156
12.1.1;4.1.1 Stage 1: System Requirements;158
12.1.2;4.1.2 Stage 2: System Design;159
12.1.3;4.1.3 Stage 3: Modeling and Design of Components;160
12.1.4;4.1.4 Stage 4: Realization and Verification of Components and System;161
12.1.5;4.1.5 Stage 5: Validation of the Haptic System;162
12.2;4.2 General Design Goals;162
12.3;4.3 Technical Descriptions of Parts and System Components;163
12.3.1;4.3.1 Single Input, Single Output Descriptions;164
12.3.2;4.3.2 Network Parameter Description;165
12.3.3;4.3.3 Finite Element Methods;167
12.3.4;4.3.4 Description of Kinematic Structures;168
12.4;References;171
13;Part IIDesigning Haptic Systems;173
14;5 Identification of Requirements;175
14.1;5.1 Definition of Application: The Right Questions to Ask;175
14.1.1;5.1.1 Experiments with the Customer;176
14.1.2;5.1.2 General Design Guidelines;178
14.2;5.2 Interaction Analysis;179
14.3;5.3 Technical Solution Clusters;183
14.3.1;5.3.1 Cluster 192: Kinaesthetic;185
14.3.2;5.3.2 Cluster 193: Surface-Tactile;186
14.3.3;5.3.3 Cluster 194: Vibro-Tactile;186
14.3.4;5.3.4 Cluster 195: Vibro-Directional;187
14.3.5;5.3.5 Cluster 196: Omnidirectional;188
14.3.6;5.3.6 General Requirement Sources;188
14.4;5.4 Safety Requirements;189
14.4.1;5.4.1 Safety Standards;189
14.4.2;5.4.2 Definition of Safety Requirements from Risk Analysis;190
14.5;5.5 Requirement Specifications of a Haptic System;196
14.6;References;196
15;6 General System Structures;198
15.1;6.1 Open-Loop Impedance Controlled;199
15.2;6.2 Closed-Loop Impedance Controlled;200
15.3;6.3 Open-Loop Admittance Controlled;202
15.4;6.4 Closed-Loop Admittance Controlled Devices;202
15.5;6.5 Qualitative Comparison of the Internal Structures of Haptic Systems;205
15.5.1;6.5.1 Tactile Devices;206
15.5.2;6.5.2 Kinaesthetic Devices;206
15.6;6.6 How to Choose a Suitable System Structure;207
16;7 Control of Haptic Systems;209
16.1;7.1 System Description;210
16.1.1;7.1.1 Linear State Space Description;211
16.1.2;7.1.2 Nonlinear System Description;212
16.2;7.2 System Stability;214
16.2.1;7.2.1 Analysis of Linear System Stability;215
16.2.2;7.2.2 Analysis of Nonlinear System Stability;218
16.3;7.3 Control Law Design for Haptic Systems;225
16.3.1;7.3.1 Structuring of Control Design;225
16.3.2;7.3.2 Requirement Definition;227
16.3.3;7.3.3 General Control Law Design;229
16.3.4;7.3.4 Example: Cascade Control of a Linear Drive;234
16.4;7.4 Control of Teleoperation Systems;236
16.4.1;7.4.1 Two-Port Representation;237
16.4.2;7.4.2 Transparency;238
16.4.3;7.4.3 General Control Model for Teleoperators;242
16.4.4;7.4.4 Stability Analysis of Teleoperators;245
16.4.5;7.4.5 Effects of Time Delay;247
16.5;7.5 Conclusion;250
16.6;References;251
17;8 Kinematic Design;254
17.1;8.1 Introduction and Classification;254
17.1.1;8.1.1 Classification of Mechanisms;256
17.2;8.2 Design Step 1: Topological Synthesis---Defining the Mechanism's Structure;258
17.2.1;8.2.1 Synthesis of Serial Mechanisms;258
17.2.2;8.2.2 Synthesis of Parallel Mechanisms;259
17.2.3;8.2.3 Special Case: Parallel Mechanisms with Pure Translational Motion;260
17.2.4;8.2.4 Example: The DELTA Mechanism;262
17.3;8.3 Design Step 2: Kinematic Equations;264
17.3.1;8.3.1 Kinematics: Basic Equations for Design and Operation;266
17.3.2;8.3.2 Example: The DELTA Mechanism;268
17.4;8.4 Design Step 3: Dimensioning;271
17.4.1;8.4.1 Isotropy and Singular Positions;272
17.4.2;8.4.2 Example: The DELTA Mechanism;277
17.5;References;278
18;9 Actuator Design;280
18.1;9.1 General Facts About Actuator Design;281
18.1.1;9.1.1 Overview of Actuator Principles;281
18.1.2;9.1.2 Actuator Selection Aid Based on Its Dynamics;284
18.1.3;9.1.3 Gears;285
18.2;9.2 Electrodynamic Actuators;288
18.2.1;9.2.1 The Electrodynamic Effect and Its Influencing Variables;289
18.2.2;9.2.2 Actual Actuator Design;303
18.2.3;9.2.3 Actuator Electronics;308
18.2.4;9.2.4 Examples for Electrodynamic Actuators in Haptic Devices;313
18.2.5;9.2.5 Conclusion About the Design of Electrodynamic Actuators;315
18.3;9.3 Piezoelectric Actuators;315
18.3.1;9.3.1 The Piezoelectric Effect;316
18.3.2;9.3.2 Designs and Properties of Piezoelectric Actuators;321
18.3.3;9.3.3 Design of Piezoelectric Actuators for Haptic Systems;325
18.3.4;9.3.4 Procedure for the Design of Piezoelectric Actuators;326
18.3.5;9.3.5 Piezoelectric Actuators in Haptic Systems;331
18.4;9.4 Electromagnetic Actuators;341
18.4.1;9.4.1 Magnetic Energy;341
18.4.2;9.4.2 Design of Magnetic Circuits;344
18.4.3;9.4.3 Examples for Electromagnetic Actuators;348
18.4.4;9.4.4 Magnetic Actuators in Haptic Devices;351
18.4.5;9.4.5 Conclusion on the Design of Magnetic Actuators;353
18.5;9.5 Electrostatic Actuators;354
18.5.1;9.5.1 Definition of Electric Field;354
18.5.2;9.5.2 Designs of Capacitive Actuators with Air-Gap;356
18.5.3;9.5.3 Dielectric Elastomer Actuators;362
18.5.4;9.5.4 Designs of Dielectric Elastomer Actuators;365
18.5.5;9.5.5 Electrorheological Fluids;369
18.6;9.6 Special Designs of Haptic Actuators;377
18.6.1;9.6.1 Haptic-Kinaesthetic Devices;377
18.6.2;9.6.2 Haptic-Tactile Devices;383
18.7;References;391
19;10 Sensor Design;399
19.1;10.1 Force Sensors;399
19.1.1;10.1.1 Constraints;400
19.1.2;10.1.2 Sensing Principles;406
19.1.3;10.1.3 Selection of a Suitable Sensor;439
19.2;10.2 Positioning Sensors;445
19.2.1;10.2.1 Basic Principles of Position Measurement;445
19.2.2;10.2.2 Requirements in the Context of Haptics;447
19.2.3;10.2.3 Optical Sensors;448
19.2.4;10.2.4 Magnetic Sensors;451
19.2.5;10.2.5 Other Displacement Sensors;453
19.2.6;10.2.6 Electronics for Absolute Positions Sensors;454
19.2.7;10.2.7 Acceleration and Velocity Measurement;455
19.2.8;10.2.8 Conclusion on Position Measurement;458
19.3;10.3 Touch Sensors;459
19.3.1;10.3.1 Resistive Touch Sensors;459
19.3.2;10.3.2 Capacitive Touch Sensors;460
19.3.3;10.3.3 Other Principles;461
19.4;10.4 Imaging Sensors;462
19.5;10.5 Conclusion;462
19.6;References;463
20;11 Interface Design;469
20.1;11.1 Border Frequency of the Transmission Chain;470
20.1.1;11.1.1 Bandwidth in a Telemanipulation System;470
20.1.2;11.1.2 Bandwidth in a Simulator System;471
20.1.3;11.1.3 Data Rates and Latencies;472
20.2;11.2 Concepts for Bandwidth Reduction;473
20.2.1;11.2.1 Analysis of the Required Dynamics;473
20.2.2;11.2.2 Local Haptic Model in the Controller;473
20.2.3;11.2.3 Event-Based Haptics;474
20.2.4;11.2.4 Movement Extrapolation;476
20.2.5;11.2.5 Compensation of Extreme Dead Times;476
20.2.6;11.2.6 Compression;476
20.3;11.3 Technical Standard Interfaces;477
20.3.1;11.3.1 Serial Port;477
20.3.2;11.3.2 Parallel Port;478
20.3.3;11.3.3 USB;479
20.3.4;11.3.4 FireWire: IEEE1394;480
20.3.5;11.3.5 Ethernet;480
20.3.6;11.3.6 Measurement Equipment and Multifunctional Interface Cards;481
20.3.7;11.3.7 HIL Systems;481
20.4;11.4 Final Remarks on Interface Technology;481
20.5;References;482
21;12 Software Design for Virtual Reality Applications;483
21.1;12.1 Overview About the Subject ``Virtual Reality'';484
21.1.1;12.1.1 Immersion;484
21.1.2;12.1.2 Natural Interaction;484
21.1.3;12.1.3 Natural Object Behavior;485
21.2;12.2 Design and Architecture of VR Systems;487
21.2.1;12.2.1 Hardware Components;487
21.2.2;12.2.2 Device Integration and Device Abstraction;488
21.2.3;12.2.3 Software Components;490
21.2.4;12.2.4 Simulation;492
21.2.5;12.2.5 Subsystems for Rendering;495
21.2.6;12.2.6 Decoupling of the Haptic Renderer from Other Sense Modalities;497
21.2.7;12.2.7 Haptic Interaction Metaphors;499
21.3;12.3 Algorithms;500
21.3.1;12.3.1 Virtual Wall;502
21.3.2;12.3.2 ``Penalty'' Methods;505
21.3.3;12.3.3 Constraint-Based Methods;507
21.3.4;12.3.4 6 DoF Interaction: Voxmap-PointShell Algorithm;510
21.3.5;12.3.5 Collision Detection;516
21.4;12.4 Software Packages for Haptic Applications;523
21.5;12.5 Perception-Based Concepts for VR software;525
21.5.1;12.5.1 Event-Based Haptics;525
21.5.2;12.5.2 Pseudo-haptic Feedback;525
21.6;12.6 Conclusion;526
21.7;References;526
22;13 Evaluation of Haptic Systems;528
22.1;13.1 System-Centered Evaluation Methods;529
22.1.1;13.1.1 Workspace;530
22.1.2;13.1.2 Output Force-Depending Values;530
22.1.3;13.1.3 Output Motion-Depending Values;533
22.1.4;13.1.4 Mechanical Properties;533
22.1.5;13.1.5 Impedance Measurements;534
22.1.6;13.1.6 Special Properties;536
22.1.7;13.1.7 Measurement of Psychophysical Parameters;536
22.2;13.2 Task-Centered Evaluation Methods;537
22.2.1;13.2.1 Task Performance Tests;537
22.2.2;13.2.2 Identification of Haptic Properties and Signals;539
22.2.3;13.2.3 Information Input Capacity (Fitts' Law);541
22.3;13.3 User-Centered Evaluation Methods;543
22.3.1;13.3.1 Workload;543
22.3.2;13.3.2 Subjective Evaluation;545
22.3.3;13.3.3 Learning Effects;546
22.3.4;13.3.4 Effects on Performance in Other Domains;546
22.4;13.4 Conclusion;547
22.5;References;547
23;14 Examples of Haptic System Development;550
23.1;14.1 Tactile You-Are-Here Maps;551
23.1.1;14.1.1 Introduction;551
23.1.2;14.1.2 The TacYAH Map Prototype;552
23.1.3;14.1.3 Evaluation;557
23.1.4;14.1.4 Conclusion and Outlook;557
23.2;14.2 Automotive Interface with Tactile Feedback;557
23.2.1;14.2.1 Context;558
23.2.2;14.2.2 The Floating TouchPad of Mercedes Benz;559
23.2.3;14.2.3 Actuator Design;561
23.2.4;14.2.4 Evaluation;566
23.2.5;14.2.5 Discussion and Outlook;569
23.3;14.3 HapCath: Haptic Catheter;571
23.3.1;14.3.1 Introduction;571
23.3.2;14.3.2 Deriving Requirements;572
23.3.3;14.3.3 Design and Development;573
23.3.4;14.3.4 Verification and Validation;576
23.3.5;14.3.5 Conclusion and Outlook;577
23.4;References;577
24;15 Conclusion;580
25;Appendix A Impedance Values of Grasps;582
26;Appendix B URLs;584
27;Glossary;589
28;Index;590




