Heepe / Xue / Gorb | Bio-inspired Structured Adhesives | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 9, 357 Seiten

Reihe: Biologically-Inspired Systems

Heepe / Xue / Gorb Bio-inspired Structured Adhesives

Biological Prototypes, Fabrication, Tribological Properties, Contact Mechanics, and Novel Concepts
1. Auflage 2017
ISBN: 978-3-319-59114-8
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark

Biological Prototypes, Fabrication, Tribological Properties, Contact Mechanics, and Novel Concepts

E-Book, Englisch, Band 9, 357 Seiten

Reihe: Biologically-Inspired Systems

ISBN: 978-3-319-59114-8
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book deals with the adhesion, friction and contact mechanics of living organisms. Further, it presents the remarkable adhesive abilities of the living organisms which inspired the design of novel micro- and nanostructured adhesives that can be used in various applications, such as climbing robots, reusable tapes, and biomedical bandages. The technologies for both the synthesis and construction of bio-inspired adhesive micro- and nanostructures, as well as their performance, are discussed in detail. Representatives of several animal groups, such as insects, spiders, tree frogs, and lizards, are able to walk on (and therefore attach to) tilted, vertical surfaces, and even ceilings in different environments. Studies have demonstrated that their highly specialized micro- and nanostructures, in combination with particular surface chemistries, are responsible for this impressive and reversible adhesion. These structures can maximize the formation of large effective contact areas on surfaces of varying roughness and chemical composition under different environmental conditions.

Lars Heepe is a junior research group leader at the Department of Functional Morphology and Biomechanics at the Zoological Institute of Kiel University, Germany and guest scientist at the nanotechnology centre NanoSYD of the Mads Clausen Institute, University of Southern Denmark. He received a B.S. degree in Engineering Physics from The Jena University of Applied Sciences, Germany in 2008. In 2011 he received a M.S. in Scientific Instruments from same university. After that, he joined the Prof. Stanislav N. Gorb's group at Kiel University, where he obtained his Ph.D. in Biophysics in 2014. In 2014 he was awarded with the Best Dissertation Award of the Faculty of Mathematics and Natural Sciences, Kiel University, Germany and in 2015 he received the Fraunhofer UMSICHT Science Award as well as the best dissertation award in the category 'Nano Life Sciences' of the research focus Kiel Nano, Surface and Interface Science. He is member of the 'Young Academy' of the Academy of the Science and Literature Mainz (2016). His research interests include adhesion, friction and contact mechanics of biological and biologically inspired attachment systems, the development of space-, time- and force-resolved in situ tribological characterization techniques, as well development of surfaces preventing marine biofouling. Longjian Xue is Professor of Materials in School of Power and Mechanical Engineering at Wuhan University, China. He received B.S. degree in Chemistry from Wuhan University in 2004. After that, he was recommended for the admission of Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, where he earned his Ph.D. degree in Polymer Chemistry and Physics in 2010. After his short stay in Rheinisch-Westfaelische Technische Hochschule Aachen, Germany, he worked as an Alexander-von-Humboldt Fellow with hosts of Prof. Martin Steinhart from Osnabrück University and Prof. Stanislav N. Gorb from Kiel University. He then joined Prof. Aránzazu del Campo's Group in Max Planck Institute for Polymer Research in Mainz, Germany. In 2015, he was awarded 'young 1000 talents' and joined Wuhan University as Professor. His research interests include investigation of stability/instability of thin polymer films, using bottom-up methods for surface patterning, fabrication and evaluation of bio-inspired micro- and nanomaterials for varies applications. He has authored 40 papers in peer reviewed journals, and has three patents. Stanislav Gorb is a group leader at the Zoological Institute of the University of Kiel, Germany. He received his PhD degree in zoology and entomology at the Schmalhausen Institute of Zoology of the Ukrainian Academy of Sciences in Kiev. Gorb was a postdoctoral researcher at the University of Vienna, a research assistant at University of Jena, a group leader at the Max Planck Institutes for Developmental Biology in Tübingen and for Metals Research in Stuttgart. Gorb's research focuses on morphology, structure, biomechanics, physiology, and evolution of surface-related functional systems in animals and plants, as well as the development of biologically inspired technological surfaces and systems. He received the Schlossmann Award in Biology and Materials Science in 1995 and was the 1998 BioFuture Competition winner for his works on biological attachment devices as possible sources for biomimetics. He is member of the Member of Academy of the Science and Literature Mainz (2010) and of the National Academy of Sciences Leopoldina (2011). Gorb has authored five books, more than 300 papers in peer reviewed journals, and four patents.

Heepe / Xue / Gorb Bio-inspired Structured Adhesives jetzt bestellen!

Weitere Infos & Material


1;Preface;7
1.1;Performance of Biological and Bio-inspired Attachment Systems in Real Environment;7
2;Contents;12
3;Contributors;14
4;1 A Bibliometric Analysis of Gecko Adhesion: A View of Its Origins and Current Directions;18
4.1;Abstract;18
4.2;1.1 Introduction;19
4.3;1.2 Materials and Methods;20
4.4;1.3 Results;22
4.5;1.4 Discussion;31
4.6;1.5 Conclusions;35
4.7;References;36
5;2 Impact of Ambient Humidity on Traction Forces in Ladybird Beetles (Coccinella septempunctata);37
5.1;Abstract;37
5.2;2.1 Introduction;38
5.3;2.2 Experimental;39
5.3.1;2.2.1 Animals;39
5.3.2;2.2.2 Force Measurements in a Controlled Atmosphere;39
5.3.3;2.2.3 Observations of the Beetle Behavior at Different Relative Humidities;41
5.4;2.3 Results;42
5.4.1;2.3.1 Observational Experiments;42
5.4.2;2.3.2 Experiment 1: One Level of Relative Humidity per Day;42
5.4.3;2.3.3 Experiment 2: Three Levels of Relative Humidity per Day;43
5.4.4;2.3.4 Effect of Sex;44
5.5;2.4 Discussion;44
5.6;2.5 Conclusions;47
5.7;Acknowledgements;47
5.8;References;47
6;3 Roughness Versus Chemistry: Effect of Different Surface Properties on Insect Adhesion;49
6.1;Abstract;49
6.2;3.1 Introduction;50
6.3;3.2 Experimental;52
6.3.1;3.2.1 Materials;52
6.3.1.1;3.2.1.1 Preparation of Flat and Rough Sample Surfaces;52
6.3.1.2;3.2.1.2 Characterization of Sample Surfaces;53
6.3.1.3;3.2.1.3 Insect Force Tests;54
6.4;3.3 Results and Discussion;55
6.5;Acknowledgements;61
6.6;References;61
7;4 Effect of Substrate Stiffness on the Attachment Ability in Ladybird Beetles Coccinella septempunctata;63
7.1;Abstract;63
7.2;4.1 Introduction;64
7.3;4.2 Materials and Methods;65
7.3.1;4.2.1 Animals;65
7.3.2;4.2.2 Sample Preparation and Characterization;65
7.3.3;4.2.3 Force Measurements;66
7.3.4;4.2.4 Statistical Analysis;67
7.4;4.3 Results;68
7.4.1;4.3.1 Sample Properties;68
7.4.2;4.3.2 Influence of the Substrate Stiffness on the Attachment Ability of Ladybird Beetles;69
7.5;4.4 Discussion;71
7.5.1;4.4.1 Sexual Dimorphism in the Attachment Ability of C. septempunctata on Substrates with Different Stiffness;71
7.5.2;4.4.2 The Role of Claws;74
7.5.3;4.4.3 Substrate Condition;75
7.6;4.5 Conclusions;75
7.7;Acknowledgements;76
7.8;References;76
8;5 Structural Effects of Glue Application in Spiders—What Can We Learn from Silk Anchors?;78
8.1;Abstract;78
8.2;5.1 Introduction;79
8.3;5.2 How to Glue a Rope;79
8.4;5.3 The Hierarchical Structure of Silk Thread Anchorages;80
8.4.1;5.3.1 Single Thread;80
8.4.2;5.3.2 Attachment Disc;81
8.4.3;5.3.3 Multiple Attachment Discs;88
8.5;5.4 Spend Less: Yield More;88
8.6;5.5 Embedding Fibres;89
8.7;5.6 Conclusions and Outlook;91
8.8;Acknowledgements;92
8.9;References;92
9;6 Optimal Adhesion Control via Cooperative Hierarchy, Grading, Geometries and Non-linearity of Anchorages and Adhesive Pads;96
9.1;Abstract;96
9.2;6.1 Introduction;97
9.3;6.2 Single and Multiple Peeling Theories Applied to Attachment Structures;98
9.4;6.3 Hierarchical Branching in Adhesive Structures;102
9.5;6.4 Geometry and Mechanical Properties of Contact Units;104
9.6;6.5 Conclusions;106
9.7;Acknowledgements;107
9.8;References;107
10;7 Double Peeling Mechanism Inspired by Biological Adhesive Systems: An Experimental Study;109
10.1;Abstract;109
10.2;7.1 Introduction;109
10.3;7.2 Experimental;112
10.4;7.3 Results and Discussion;113
10.4.1;7.3.1 Double Peeling Experiments;113
10.4.2;7.3.2 Biological Relevance;116
10.5;7.4 Conclusions;118
10.6;Acknowledgements;119
10.7;References;119
11;8 The Role of Effective Elastic Modulus in the Performance of Structured Adhesives;121
11.1;Abstract;121
11.2;8.1 Introduction;121
11.3;8.2 Elastic Modulus;122
11.4;8.3 Effective Elastic Modulus;123
11.5;8.4 Natural Structured Adhesives Regulated by Eeff;125
11.5.1;8.4.1 Structured Adhesives in Nature;125
11.5.2;8.4.2 Natural Adhesives with Material Softening;131
11.6;8.5 Artificial Structured Adhesives;133
11.6.1;8.5.1 Basic Pillar/Fiber Arrays;133
11.6.1.1;8.5.1.1 Manufacture Methods;133
11.6.1.2;8.5.1.2 Influence of Pillar Size on Adhesion;136
11.6.2;8.5.2 Tip Geometry;139
11.6.2.1;8.5.2.1 Manufacture Methods;139
11.6.2.2;8.5.2.2 Influence of Tip Geometry on Adhesion;142
11.6.3;8.5.3 Tilted Configuration;146
11.6.4;8.5.4 Porous Structure;148
11.6.5;8.5.5 Combination of Several Structural Features;150
11.7;8.6 Conclusions and Outlooks;150
11.8;Acknowledgements;151
11.9;References;151
12;9 Biological Microstructures with Enhanced Adhesion and Friction: A Numerical Approach;154
12.1;Abstract;154
12.2;9.1 To Optimal Elasticity of Adhesives Mimicking Gecko Foot-Hairs;154
12.3;9.2 Flexible Tissue with Fibers Interacting with Adhesive Surface;160
12.4;9.3 Fibrillar Adhesion with No Clusterisation: Functional Significance of Material Gradient;165
12.5;9.4 Spatial Model of the Gecko Foot Hair: Functional Significance of Highly-Specialized Non-uniform Geometry;173
12.6;9.5 Shear Induced Adhesion: Contact Mechanics of Biological Spatula-Like Attachment Devices;181
12.7;References;189
13;10 Hierarchical Models of Engineering Rough Surfaces and Bio-inspired Adhesives;191
13.1;Abstract;191
13.2;10.1 Introduction;191
13.3;10.2 Preliminaries;192
13.3.1;10.2.1 Some Characteristics of Surface Topography Models;193
13.3.2;10.2.2 Modelling of Dry Friction Between Rough Surfaces;193
13.3.3;10.2.3 Simulations of Friction by a Multi-scale Non-hierarchical Model;195
13.4;10.3 The Early Non-hierarchical Models of Rough Surfaces;197
13.4.1;10.3.1 The Prandtl-Tomlinson Model;197
13.4.2;10.3.2 The Zhuravlev and Greenwood-Williamson Models;199
13.4.3;10.3.3 The Kragelsky Rod-Assembly Model;202
13.4.4;10.3.4 The Sergienko-Bukharov Model;203
13.4.5;10.3.5 The Bristle Model;204
13.4.6;10.3.6 The Al-Bender Model;205
13.4.7;10.3.7 The Real Nano-topography Model;206
13.5;10.4 Hierarchical Models of Engineering Rough Surfaces;207
13.5.1;10.4.1 The Archard Model;207
13.5.2;10.4.2 The Cantor-Liu and Cantor-Borodich Profiles;208
13.5.3;10.4.3 The Models Based on the Cantor-Borodich Profiles;210
13.5.4;10.4.4 The Borodich-Onishchenko Multilevel and Multiscale Hierarchical Profiles;213
13.6;10.5 Simulations of Friction by Multi-scale Models;213
13.6.1;10.5.1 Multi-asperity Models of Surface Roughness;214
13.6.2;10.5.2 The Mechanical Properties of the Rubbing Counterparts;218
13.7;10.6 Some Bio-inspired Adhesive Devices;219
13.7.1;10.6.1 Single-Level, Non-hierarchical Adhesive Microstructures;219
13.7.1.1;10.6.1.1 Micro-fabricated Non-hierarchical Adhesives Mimicking Gecko Pads;220
13.7.1.2;10.6.1.2 Mushroom-like Non-hierarchical Fibrillar Adhesive Microstructures;223
13.7.2;10.6.2 Hierarchical Adhesive Microstructures;225
13.7.2.1;10.6.2.1 Micro-fabricated Hierarchical Adhesives Mimicking Gecko Pads;225
13.7.2.2;10.6.2.2 Micro-fabricated Hierarchical Adhesive Mimicking Spider’s Leg;227
13.7.2.3;10.6.2.3 Mushroom-like Hierarchical Fibrillar Adhesive Microstructures;228
13.8;10.7 Concluding Discussion;228
13.9;Acknowledgements;229
13.10;References;230
14;11 Manufacturing Approaches and Applications for Bioinspired Dry Adhesives;232
14.1;Abstract;232
14.2;11.1 Introduction;232
14.2.1;11.1.1 History;233
14.2.2;11.1.2 Manufacturing Approaches;234
14.2.2.1;11.1.2.1 Top Down Manufacturing Approaches;234
14.2.2.2;11.1.2.2 Bottom up Manufacturing Approaches;235
14.2.2.3;11.1.2.3 Silicon Based Mold Fabrication;238
14.2.2.4;11.1.2.4 Polymer Based Mold Fabrication;239
14.2.3;11.1.3 Structural Material Choice;241
14.2.3.1;11.1.3.1 Silicone Rubbers;242
14.2.3.2;11.1.3.2 Polyurethane Rubbers;243
14.2.3.3;11.1.3.3 Thermoplastic Elastomers;243
14.2.3.4;11.1.3.4 Rigid Polymers;243
14.2.3.5;11.1.3.5 Composites;244
14.2.4;11.1.4 Production Scaling Issues;245
14.2.5;11.1.5 Manufacturing Failure Modes;246
14.2.5.1;11.1.5.1 Replication Failures;247
14.2.5.2;11.1.5.2 Durability Failures;249
14.3;11.2 Conclusions;251
14.4;Acknowledgements;252
14.5;References;252
15;12 Contact Mechanics of Mushroom-Shaped Adhesive Structures;256
15.1;Abstract;256
15.2;12.1 Introduction;256
15.3;12.2 The Cylindrical Micropillar;257
15.4;12.3 The Mushroom Shaped Pillar;261
15.5;12.4 Shape Optimization;264
15.6;12.5 Interfacial Entrapped Air;270
15.7;12.6 The Influence of Non-uniform Pillar Height Distribution;275
15.8;12.7 Stress Aided Thermally Activated Defect Nucleation;277
15.9;12.8 Adhesion Tilt-Tolerancy;280
15.10;12.9 Conclusions and Outlook;286
15.11;References;286
16;13 Bioinspired Mushroom-Like Fiber Adhesives;288
16.1;Abstract;288
16.2;13.1 Introduction;288
16.2.1;13.1.1 Results from the Numerical Study on the Effect of Tip Shape;289
16.3;13.2 Fabrication of Mushroom-Like Microfibers with Varying Cap Dimensions;292
16.4;13.3 Single Microfiber Pull-Off Experiments;295
16.5;13.4 Results and Discussion;296
16.5.1;13.4.1 Pull-Off Experiments;296
16.5.2;13.4.2 Comparison Between Simulations and Experiments;297
16.5.3;13.4.3 Repeatability of Adhesion Stress;298
16.6;13.5 Conclusions;299
16.7;References;300
17;14 Adhesion Enhancement of a Gel-Elastomer Interface by Shape Complementarity;302
17.1;Abstract;302
17.2;14.1 Introduction;302
17.3;14.2 Experimental;304
17.3.1;14.2.1 Sample Preparation and Adhesion Testing;304
17.3.2;14.2.2 Finite Element Model;305
17.4;14.3 Results and Discussion;307
17.5;14.4 Conclusion;311
17.6;Acknowledgements;311
17.7;References;311
18;15 On the Bioadhesive Properties of Silicone-Based Coatings by Incorporation of Block Copolymers;313
18.1;Abstract;313
18.2;15.1 Introduction;315
18.3;15.2 Self-assembly of PDMS-Based Block Copolymers;321
18.3.1;15.2.1 Self-assembly of PDMS-b-PDMAEMA Copolymers in THF Non-selective Solvent;322
18.3.2;15.2.2 Self Assembly of PDMS-b-PAA Block Copolymers;323
18.4;15.3 Incorporation of Block Copolymer into Silicone Coatings for Adhesive Applications;326
18.4.1;15.3.1 Coating Preparation;326
18.4.2;15.3.2 Contact Angle Measurements;327
18.4.3;15.3.3 X-ray Photoelectron Spectroscopy Measurements;331
18.4.4;15.3.4 Atomic Force Microscopy (AFM) Measurements in Air;332
18.4.5;15.3.5 Atomic Force Microscopy (AFM) Measurements in Water;336
18.4.6;15.3.6 Bio-adhesion Testing;346
18.5;15.4 Conclusions;348
18.6;Acknowledgements;349
18.7;References;350
19;Index;354



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.